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Abstract

We give a theorem on the existence of an equilibrium price vector for an excess demand

correspondence, which may have been derived from consumers with non-monotone preference

relations.

1 Introduction

We give a theorem on the existence of an equilibrium price vector for an excess demand cor-

respondence, which may have been derived from consumers with non-monotone preference

relations. Several points are noteworthy on this theorem. First, the notion of an equilibrium

price vector is an exact one, so that the demand is no more or no less than supply, and hence

prices may be negative. Second, the set of prices on which the excess demands are well defined

are convex and relatively open. This is a highly non-trivial assumption. Third, only a rather

weak condition is imposed on the boundary behavior of the excess demand correspondence.

2 Definitions and Result

Let L be a positive integer and w ∈ RL. Let ‖ · ‖ be the Euclidean norm on RL and assume

that ‖w‖ = 1. Define H = {p ∈ RL | p · w = 1}. The interpretation is that L is the number

of commodities; w is the direction along which the utility levels of some group of consumers of

strictly positive measure can be strictly increased; and H is the set of normalized price vectors.

Theorem 1 Let P ⊆ H and ζ : P → RL be a correspondence satisfying the following proper-

ties.

1. P is a nonempty, convex, and open subset of H containing w.

2. ζ is nonempty-, convex-, and compact-valued and upper hemi-continuous.

3. ζ satisfies the strict Walras law, that is, p · z = 0 for every p ∈ P and z ∈ ζ(p).
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4. There exists a nonempty and compact subset V of P such that the set{
p ∈ P | min

z∈ζ(p)
max
v∈V

v · z < 0
}

(1)

is included in a compact subset of P .

Then there exists a p∗ ∈ P such that 0 ∈ ζ(p∗).

The first condition may appear to be standard. Note however that P may not be bounded,

and that the convexity and openness are non-trivial conditions on the domain of the aggregate

excess demand correspondence. The second condition needs no comment. In the third condi-

tion, the Walras law is in the strict form, so that we require the strict equality p · z = 0 rather

than the weak inequality p · z ≤ 0. The maximum in (1) of the last condition is indeed attained

because V is compact. The minimum is also attained because the function z 7→ max
v∈V

v · z is

continuous and ζ(pn) is compact. Note that negative prices are allowed throughout this set of

conditions.

Proof of Theorem 1. The proof method is more or less the same as in Hüsseinov (1999). We

assume throughout this section that P , ζ, and V satisfy the conditions of Theorem 1.

Let P ∗ be a compact subset of P that includes
{

p ∈ P | min
z∈ζ(p)

max
v∈V

v · z < 0
}

. Since P

is relatively open in H and P ∗ ∪ V ∪ {w} is a compact subset of P , there exists a convex

and compact subset Q of P such that the relative interior of Q with respect to H includes

P ∗ ∪ V ∪ {w}.

By Proposition 3 of Hildenbrand (1974, I.B), there exists a convex and compact subset Z

of RL such that ζ(p) ⊂ Z for every p ∈ Q. Following the construction of Debreu (1956), we

can show that there exists a (p∗, z∗) ∈ Q× Z such that z∗ ∈ ζ(p∗) and

p∗ · z∗ ≥ p · z∗ (2)

for every p ∈ Q.

Suppose that there is no c ∈ R such that z∗ = cw. Then the set argmax p∈Qp · z∗ is

included in the relative boundary of Q with respect to H. In particular, p∗ belongs to the

relative boundary of Q with respect to H. Also, p · z∗ < p∗ · z∗ = 0 for every p in the relative

interior of Q with respect to H. Since V is included in the relative interior of Q with respect

to H, this implies that max
v∈V

v · z∗ < 0 and hence p∗ ∈ P ∗. But since P ∗ is also in the relative

interior of Q with respect to H, this implies that p∗ is in the relative interior of Q with respect

to H, which is a contradiction. Hence there exists a c ∈ R such that z∗ = cw. By the strict

Walras Law and p∗ ·w = 1, if we take the inner products of both sides with p∗, then we obtain

0 = c. Hence z∗ = 0 and 0 ∈ ζ(p∗). ///

Remark 1 While it is desirable to dispense with the assumption that P is relatively open and

convex, it is impossible to do so entirely. There is an economy with a continuum of consumers
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such that P is not relatively open, and in fact there is no equilibrium. For example, the

aggregate (mean) excess demand function of Example 10 of Hara (2004) is well defined under

a price vector p ∈ R2 if and only if p1 > 0 and p2 ≥ 0. In fact, then, it is a (single-valued)

function given by

ζ(p) =
(

p2

p1
,−1

)
.

Any candidate w for the application of the theorem must satisfy w1 > 0 and w2 ≥ 0. But then

{p ∈ R2 | p1 > 0, p2 ≥ 0, and p · w = 1} is not relatively open, because its relative boundary

contains (1/p1, 0). This set could be relatively open if w = (0, 1), in which case it would be

{p ∈ R2 | p1 > 0 and p2 = 1}. But this set does not contain any positive multiple of p = (1, 0).

3 Existence of a Numeraire Vector

Recall that the vector w have two properties in the theorem. First, an equilibrium price vector,

if any, is assumed to give a positive value to the commodity vector w. Second, if the price

vector equals w, then the excess demands must be well defined.

In the case of strongly monotone preference relations, w can be taken to be (1, 1, . . . , 1) and

V can be taken to be the singleton {w}. Then the boundedness from below and the standard

boundary behavior condition, ‖zn‖ → ∞ as n →∞, where zn ∈ ζ(pn) and (pn)n is an escaping

sequence of strictly positive price vectors, implies Condition 4 of Theorem 1. For some cases

of non-monotone preference relations, w may be taken to be w = (1, 0, . . . , 0) or even involving

some negative coordinates.

We now show that there is no essential loss of generality in normalizing prices so that some

vector, under which the aggregate excess demand exists, serves as the numeraire. For this

result, we need to be explicit on conditions for the consumers’ consumption sets and preference

relations.

Proposition 2 Suppose that the consumers’ consumption sets are RL
+ and preference relations

are complete, transitive, continuous, and globally non-satiated. Let P ⊂ RL be the set of all

price vectors under which the aggregate excess demands exist. If P is convex, then there exists

a w ∈ P such that p · w > 0 for every p ∈ P .

Proof of Proposition 2. By the completeness, transitivity, and continuity, P ⊇ RL
++.

Suppose that there exists a p ∈ P such that {p,−p} ⊆ P . Then, for every consumer a,

there exists a utility maximizing consumption vector for each of the two budget sets, {x ∈

RL
+ | p · x ≤ p · e(a)} and {x ∈ RL

+ | (−p) · x ≤ (−p) · e(a)} = {x ∈ RL
+ | p · x ≥ p · e(a)}.

By transitivity, at least one of the two vectors is a utility-maximizing consumption vector on

the entire RL
+. But this contradicts the global non-satiation property. Hence if p ∈ P , then

−p 6∈ P .
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By homogeneity, P ∪{0} is a cone. Since P is convex and includes RL
++, P ∪{0} is a closed

and convex cone with a nonempty interior. Since, as proved in the last paragraph, −p 6∈ P for

every p ∈ P , P ∪ {0} is a pointed cone, that is, it does not contain any line.

Now denote by clP the closure of P , then clP is a closed convex cone with a nonempty

interior. It need not be pointed, so we denote by M the largest linear subspace included in

P and by N the orthogonal complement of M . Then clP = M + (N ∩ cl P ) and N ∩ cl P is

a pointed cone with a nonempty interior in N . By the separating hyperplane theorem being

applied within N , there exists a w′ ∈ N such that p ·w′ > 0 for every p ∈ N ∩ cl P with p 6= 0.

Then let w′′ ∈ N be the orthogonal projection of w′ onto N ∩ cl P . Then p · w′′ ≥ p · w′ and

hence p · w′′ > 0 for every p ∈ N ∩ cl P with p 6= 0. Since N ∩ cl P is pointed, there exists a

δ > 0 such that p · w′′ > δ for every p ∈ N ∩ cl P with ‖p‖ = 1. Thus there exists a w ∈ N ,

sufficiently close to w′′, such that w belongs to the interior of N ∩cl P in N , and hence of N ∩P

by the convexity of P , and p · w > δ/2 for every p ∈ N ∩ cl P with ‖p‖ = 1. Thus w ∈ P and

p · w > 0 for every p ∈ P . ///

4 Other Types of Boundary Behaviors

The condition of the boundary behavior that we imposed in Theorem 1 is that there exist

a nonempty and compact subset V of P such that the set
{

p ∈ P | min
z∈ζ(p)

max
v∈V

v · z < 0
}

is

included in a compact subset of P . In this section we give two sufficient conditions for this one

that are more along the lines of the existing literature. The result is the following.

Proposition 3 If V is a nonempty and compact subset of P and the set
{

p ∈ P | min
z∈ζ(pn)

max
v∈V

v · z ≤ 0
}

is compact, then the set
{

p ∈ P | min
z∈ζ(p)

max
v∈V

v · z < 0
}

is compact as well.

This proposition follows immediately from the fact that
{

p ∈ P | min
z∈ζ(p)

max
v∈V

v · z < 0
}

is a

subset of
{

p ∈ P | min
z∈ζ(p)

max
v∈V

v · z ≤ 0
}

.

The second sufficient condition for the boundary behavior of Theorem 1 is in terms of

sequences of price vectors.

Definition 4 Let P be a subset of H and let (pn)n be an arbitrary sequence in P . Then (pn)n

is escaping in P if for every compact subset C of P there exist an N such that pn 6∈ C for every

n > N .

According to this definition, the elements of an escaping sequence in P would eventually

go outside any compact set. To give the idea of what escaping sequences are like, it would be

helpful to give some preliminary results.

Lemma 5 Let P be a subset of H and let (pn)n be an arbitrary sequence in P .
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1. If (pn)n is divergent, that is, ‖pn‖ → ∞ as n →∞, then (pn)n is escaping in P .

2. Suppose that (pn)n converges to some p ∈ H (with respect to the topology of the entire

H). Then (pn)n is escaping in P if and only if p 6∈ P .

3. Suppose that P is a bounded and open subset of H. Then (pn)n is escaping if and only if

all of its cluster points belong to the (relative) boundary of P .

Proposition 6 If V is a non-empty and compact subset V of P and, for every escaping se-

quence (pn)n in P ,

lim sup
n→∞

min
z∈ζ(pn)

max
v∈V

v · z > 0, (3)

then the set
{

p ∈ P | min
z∈ζ(pn)

max
v∈V

v · z ≤ 0
}

is compact.

By this proposition and Proposition 3, we can conclude that the condition (3) is sufficient

for the boundary condition of Theorem 1.

Proof of Proposition 6. Denote by P ∗ the set
{

p ∈ P | min
z∈ζ(pn)

max
v∈V

v · z ≤ 0
}

and let (pn)n

be a sequence in P ∗. It suffices to show that (pn)n has a subsequence convergent in P ∗. For

each n, let zn ∈ ζ(pn) satisfy max
v∈V

v · zn ≤ 0.

If (pn)n is an escaping sequence, then Condition 4 of Theorem 1 implies that

min
z∈ζ(pn)

max
v∈V

v · z > 0 for infinitely many n. But this contradicts the hypothesis that (pn)n

is a sequence in P ∗. Hence (pn)n is not an escaping sequence. Thus, there exist a compact set

C ⊂ P and a subsequence (pkn)n such that pkn ∈ C for every n. For each n, let zkn ∈ ζ(pkn)

satisfy max
v∈V

v · zkn ≤ 0. Since ζ is convex- and compact-valued and upper hemi-continuous, by

Theorem 1 of Hildenbrand (1974, I.B), there exists a subsequence ((pjn
, zjn

))n of ((pkn , zkn))n

that converges to some (p, z) ∈ C ×RL with z ∈ ζ(p). Then max
v∈V

v · z ≤ 0 and hence p ∈ P ∗.

This completes the proof. ///

References

[1] Gerard Debreu, 1956, Market equilibrium, Proceedings of the National Academy of Sciences

of the United States of America, 42, 876–878.

[2] Chiaki Hara, 2004, Existence of equilibria and core convergence in economies with bads,

Cambridge Working Paper Series in Economics 0413.

[3] Werner Hildenbrand, 1974, Core and Equilibria of a Large Economy, Princeton University

Press.

[4] Farhad Hüsseinov, 1999, Boundary behavior of excess demand and existence of equilibrium,

Journal of Economic Theory, 87, 434–449.

[5] Wilhelm Neuefeind, 1980, Notes on existence of equilibrium proofs and the boundary

behavior of supply, Econometrica 48, 1831–1837.

5


