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Abstract

In an exchange economy under uncertainty populated by multiple consumers, we how

the heterogeneity in the individual consumers’ subjective beliefs affect the representative

consumer’s utility function. We derive a formula that indicates that the more heterogeneous

the individual consumers’ beliefs are, the higher probabilities the representative consumer’s

belief attaches to extreme events that would, in the absence of heterogeneous beliefs, have

very low probabilities. We also explore an implication of this formula on derivative asset

pricing.
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1 Introduction

In this paper, we study how the heterogeneity in consumers’ probabilistic beliefs may affect the

pricing of derivative assets. In particular, we show how standard pricing formulas, such as the

Black-Scholes option pricing, can be obtained in cases where the consumers have homogeneous

beliefs, and introducing heterogeneous beliefs into such cases affect their predictions. In a

nutshell, we show that the derivative asset prices predicted in models with heterogeneous beliefs

tend to be higher than those predicted in models with homogeneous beliefs.

Whenever we say derivative assets in this paper, we mean that the underlying asset is the

(fixed) aggregate consumption of the (exchange) economy. By heterogeneous beliefs, we mean

that the distribution functions of the aggregate consumption with respect to consumers’ (sub-

jective) beliefs are different. In this respect, our model is the same as that of Huang (2003),

but quite different from it in another respect: while Huang (2003) assumed that all consumers

believe that the aggregate consumption is log-normally distributed, we cover cases where they

believe that the aggregate consumption is distributed according to other types of distributions,

∗The financial assistance from the Grant in Aid for Specially Promoted Research from Japan Society for the
Promotion of Sciences for “Economic Analysis on Intergenerational Problems”, and from Inamori Foundation on
“Efficient Risk-Sharing: An Application of Finance Theory to Development Economics”. My email address is
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such as Gamma distributions. Specifically, we assume that the first differential of the log of the

density (Radon-Nikodym derivative) of the distribution, according to each consumer’s belief,

of the aggregate consumption with respect to the true (objective) probability can be multi-

plicatively separated into two parts, so that it is equal to a function of the realized levels

of aggregate consumption, which is common across all consumers, multiplied by a consumer-

specific constant. Obscure as it may seem, this assumption is satisfied by surprisingly many

families of probability distributions, such as log-normal, Gamma, Chi, Beta, Weibull, Pareto,

Poisson, binomial, and negative binomial. Moreover, this assumption is sufficient for the prop-

erties called the monotone likelihood ratio condition and the log super-modularity among the

individual consumers’ beliefs. These properties are well known and often used in the literature

on monotone comparative statics.

Our proof method of the result on the mispricing of derivative assets goes as follows. First,

we construct the representative consumer along the lines of Wilson (1968) and, under the

assumption that all individual consumers have constant and equal relative risk aversion, show

that the representative consumer’s belief is well defined. Next, we prove that the density of the

distribution, according to the representative consumer’s belief, of the aggregate consumption

with respect to the true (objective) probability has fatter and lower tails than in the (fictitious)

case of homogeneous beliefs.1 It is at this step where the assumption on the heterogeneity of the

individual consumers’ beliefs is used. Finally, we derive from these fatter tails higher prices for

derivative assets, whenever their payoffs are convex functions of the underlying asset (aggregate

consumption).

The rest of this paper is organized as follows. In Section 2, we spell out the model and

assumptions and give some basic analysis. In Section 3, we establish the results on fatter tails

of the density of the representative consumer’s belief and the mispricing of derivative assets.

In Section 4, we give examples of families of distributions that satisfy our assumption on the

heterogeneity of the individual consumers’ beliefs. In Section 5, we give a work-out example on

how the heterogeneous beliefs induce the density of the representative consumer’s belief to have

fatter tails. In Section 6, we give a summary of our results and suggest a direction of future

research. Some roofs are given in the appendix.

2 Setup

2.1 Uncertainty and consumers

The general setup of our analysis is as follows. Let Z be a non-empty interval in R. We represent

the uncertainty surrounding the economy by a probability space (Z,B(Z), P ), where B(Z) is

the Borel σ-field of Z. The support of P need not coincide with the entire Z. In particular, it

may be a finite subset of Z, and, thus, the case of finitely many states is not really excluded

from our analysis although the space Z is an interval. We assume that P is not concentrated

1Gollier (2007) gave a general method to relate the representative consumer’s belief to the individual con-
sumers’ counterparts.
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on any single point in Z to exclude the case without uncertainty.

The economy consists of I consumers. Each consumer i has a felicity function ui : R++ → R,

which is twice continuously differentiable, and satisfies u′i(xi) > 0 > u′′i (xi) for every xi ∈ R++

and the Inada condition, that is, u′i(xi) → 0 as xi → ∞, and u′i(xi) → ∞ as xi → 0. Each

consumer i also has a subjective probabilistic belief, which is characterized by a probability

measure Pi on (Z,B(Z)). His utility function Ui is defined as the expected utility function

Ui(ci) = EPi(ui(ci)) =

∫
Z
ui(ci(z)) dPi(z),

where ci : Z → R++. To be exact, we need to impose some additional restrictions on ci to

make the integral well defined (finite). As such restrictions do not alter our results, we shall

not explicitly state or impose them.

We assume that for every i, Pi and P are mutually absolutely continuous. We also assume

that there is a version pi : Z → R++ of the Radon-Nikodym derivative (density) dPi/ dP that

is continuously differentiable on Z.2 Note that the requirement of continuous differentiability

is met whenever P is concentrated on a finite set, or, more generally, whenever there is an at

most countable subset Y of Z such that P (Y ) = 1 and every point of Y is an isolated point of

Y . Then

Ui(ci) =

∫
Z
ui(ci(z))pi(z) dP (z) = E (ui(ci)pi) .

The key parameter of the density function is, coined by Wilson (1968),3 the dispersion, qi : Z →
R defined by qi(z) = p′i(z)/pi(z) for every z ∈ Z. Thus, qi(z) is equal to the percentage change

in the density p(z) when the state variable z is changed by one unit. Moreover,

pi(z)

pi(z∗)
= exp

(∫ z

z∗
qi (t) dt

)
(1)

for all z ∈ Z and z∗ ∈ Z. There is, therefore, a one-to-one relationship between probability

density functions and the dispersions.4

2.2 Pareto-efficient allocations

To find a Pareto efficient allocation of a given aggregate consumption c : Z → R++ and

its supporting (decentralizing) state-price density, it is sufficient to choose positive numbers

2Continuous differentiability at extremal points of Z means the existence and continuity of left or right
derivatives at such points.

3In fact, Wilson (1968) referred to −p′i(z)/pi(z) as the dispersion.
4Since the subjective probability measure Pi does not uniquely determine the probability density function on

sets of P -measure zero, this does not imply that Pi uniquely determines the dispersion, unless the support of the
objective probability measure P coincides with the entire Z.
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λ1, . . . , λI and consider the following maximization problem:

max
(c1,...,cI)

∑
i

λiUi(ci)

subject to
∑
i

ci = c.
(2)

Since the utility functions Ui are additive with respect to states and the expected utilities are

calculated with respect to the common probability measure P , it can be rewritten as

∑
i

λiUi(ci) = E

(∑
i

λiui(ci)pi

)
=

∫
Z

(∑
i

λiui(ci(z))pi(z)

)
dP (z).

Hence, to solve the original maximization problem (2), it suffices to solve the simplified maxi-

mization problem

max
(x1,...,xI)∈RI

++

∑
i

λiui(xi)pi(z)

subject to
∑
i

xi = x.
(3)

for each pair of a realized aggregate consumption level x ∈ R++ and a state variable z ∈ Z. It

can be easily proved that under the stated conditions, there is a unique solution, which we denote

by (f1(x, z), . . . , fI(x, z)). It can also be shown that for each fi is continuously differentiable in

both variables. We can define the value function of this problem v : R++ × Z → R by

v(x, z) =
∑
i

λiui (fi(x, z)) pi(z).

Then the solution to the original maximization problem is given by (c1, . . . , cI), where, for each

i, ci : Z → R++ is defined by ci(z) = fi (c(z), z) for every z ∈ Z. The representative consumer ’s

utility function U is defined by

U(c) =

∫
Z
v(c(z), z) dP (z) = E (v(c, ι)) ,

where ι is the identity function on Z. The integrand vi of each individual consumer’s utility

function Ui is the product of the felicity function ui and the density function pi. This property

is called multiplicative separability. The integrand v of the representative consumer’s utility

function U need not have this property. This means, in particular, that the representative

consumer’s utility function need not be given in the expected utility form.

We define dispersion q : Z → R for the representative consumer by letting

qi(x, z) =

∂2v(x, z)

∂z∂x
∂v(x, z)

∂x

for every (x, z). This measures the percentage change in the representative consumer’s marginal
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utility when z is increased by one. This definition coincide with the definition of dispersion for

the individual consumers if v is multiplicatively separable.

The representative consumer is, of course, not an “actual” consumer, who would trade on

financial markets. Rather, he is a theoretical construct, whom we can use to identify asset

prices. Specifically, the representative consumer’s marginal utility evaluated at the aggregate

consumption c, (∂u(c, h)/∂x), is a state price density. This means that the price of an asset with

dividend d : Z → R, relative to the risk-free bond (which pays off one unit of the commodity

whichever state has been realized), is equal to

E

(
∂v(c, ι)

∂x
d

)
E

(
∂v(c, ι)

∂x

) .

Although we analyze the Pareto efficient allocations and their supporting (decentralizing)

prices, if the asset markets are complete, then our analysis is applicable to the equilibrium

allocations and asset prices. This is because the first welfare theorem holds in complete markets,

so that the equilibrium allocations are Pareto efficient and the equilibrium asset prices are given

by the corresponding support prices. Since the ui are concave, the second welfare theorem also

holds, so that every Pareto efficient allocation is an equilibrium allocation for some distribution

of initial endowments. Hence an analysis of Pareto efficient allocations is also an analysis of

equilibrium allocations.

When the solution to the maximization problem (2) is an equilibrium allocation, the in-

dividual consumers’ wealth shares, evaluated by the equilibrium prices, determines the utility

weights λi in (2). All the properties we shall explore in the subsequent analysis are valid regard-

less of the choice of utility weights. Hence, these properties are also valid for the equilibrium

allocations regardless of wealth distributions.

2.3 Special case

For the analysis of this paper, we shall concentrate on the special case in which the following

assumptions are met

Assumption 1 All individual consumers share the same constant relative risk aversion γ > 0.

Thus, we can assume without loss of generality that they share the same felicity function, which

is denoted by u : R++ → R satisfying u′(x) = x−γ for every x ∈ R++. This assumption is

imposed to ensure that any deviation from the standard results on derivative asset pricing is

due to the heterogeneity in subjective probabilistic beliefs, not in risk attitudes.

Under Assumption 1, the first-order condition for the solution to the maximization problem

(2) is that

λi(fi(x, z))
−γpi(z) =

∂v

∂x
(x, z)
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for every i and (x, z) ∈ R++×Z. Rearranging this, summing them over i, and the rearranging

the resulting expression, we obtain

∂v

∂x
(x, z) =

(∑
i

(λipi(z))
1/γ

)γ
x−γ

for every z ∈ Z. We can, thus, let the representative consumer’s utility function be the same

as the individual consumers’ u (having constant relative risk aversion equal to γ) and his belief

be given by the density function p : Z → R++ defined by

p(z) =

(∑
i (λipi(z))

1/γ
)γ

E
((∑

i (λipi(c))
1/γ
)γ)

for every z ∈ Z. That is,

v(x, z) = p(z)u(x) =

(∑
i (λipi(z))

1/γ
)γ
u(x)

E
((∑

i (λipi(c))
1/γ
)γ) .

A straightforward calculation shows that his dispersion, q = p′/p, is given by

q(z) =

∑
i qi(z) (λipi(z))

1/γ∑
i (λipi(z))

1/γ

for every z ∈ Z.

We impose the following assumption on the way in which the subjective beliefs are hetero-

geneous.

Assumption 2 There exists a Borel-measurable function g : Z → R++ such that for every i,

there exists an αi ∈ R such that qi(z) = αig(z) for every z ∈ Z.

This assumption requires that all individual consumers’ dispersions be heterogeneous only in

terms of the scaling factors of some common function defined on Z. Since qi = p′i/pi, this

condition is equivalent to the following one: There exists a continuous function g : Z → R++

such that for every i and every z◦ ∈ Z, there exists an (αi, βi) ∈ R2 such that

pi(z) = exp

(
αi

∫ z

z◦
g(t) dt+ βi

)
for every z ∈ Z. Here βi is the scaling factor, determined uniquely by αi and z◦, that leads to∫
Z pi(z) dP (z) = 1.

Define q(·|·) : Z×R→ R by letting q(z|α) = αg(z). Define p(·|·) : Z×R→ R++ by letting

p(·|α) be the probability density function corresponding to q(·|α) (that is, ∂ ln p(z|α)/∂z =

q(z|α)). Let P (·|α) : B(Z) → [0, 1] be the probability measure corresponding to p(·|α) (that

is, dP (·|α)/dP = p(·|α)). Then the family (P (·|α))α∈R of probability measures satisfies the
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monotone likelihood ratio condition, or, equivalently, p(·|·) : Z×R→ R++ is log-supermodular,5

because
∂2

∂α∂z
ln p(z|α) =

∂

∂α
q(z|α) = g(z) > 0.

According to this notation, qi(z) = q(z|αi), pi(z) = p(z|αi), and Pi = P (·|αi).
The crucial property embedded in Assumption 2 is the multiplicative separability between α

and z. Indeed, if there exist a strictly increasing or strictly decreasing function k : R→ R such

q(z|α) = k(α)g(z), then we could simply refer to k(α) or −k(α) as α to satisfy Assumption 2.

We now explore some properties of the representative consumer’s belief and the state-price

density. First, define hi : Z → R++ and m : Z → R++ by letting

hi(z) = (λipi(z))
1/γ ,

m(z) =

∑
i αihi(z)∑
i hi(z)

for every z ∈ Z. Then q(z) = g(z)m(z) for every z ∈ Z. This, in particular, implies that if all

individual consumers have the same scaling factor, then the representative consumer also has

the same scaling factor. Moreover, m is non-decreasing, because, for every z ∈ Z,

m′(z) =
1

γ

(∑
i α

2
i hi(z)∑

i hi(z)
−
(∑

i αihi(z)∑
i hi(z)

)2
)

=
1

γ

∑
i(αi −m(z))2hi(z)∑

i hi(z)
.

The last term is strictly positive, and m is strictly increasing, under the following assumption.

Assumption 3 Under Assumption 2, there are i and j such that αi 6= αj .

We end this subsection by introducing the concept of the normalized state price density.

Let c : Z → R++ be the aggregate consumption. Using the representative consumer’s utility

function u and probability density function p, we define π : Z → R++ by letting

π(z) =
p(z)u′(c(z))

E(pu′(c))
. (4)

Then E(π) = 1. Thus the the risk-free asset is the numeraire for π, from which the term

“normalized state-price deflator” is derived. For p(·|α), we define the corresponding normalized

state price density π(·|α) : Z → R++ by letting

π(z|α) =
p(z|α)u′(c(z))

E(p(·|α)(u′(c))
. (5)

3 Main results

In this section, we show how the heterogeneity in individual consumers’ subjective beliefs lead

to mispricing of derivatives, such as options.

5Another equivalent condition is that ln p(·|·) satisfies the increasing difference condition.

7



To state our main theorem, we need to fix our terminology. Let c : Z → R++ be the

aggregate consumption. By a derivative asset, we mean a derivative asset whose underlying

asset is the aggregate consumption. Thus its payoff is determined by a function ϕ : R++ → R

so that ϕ(c(z)) is equal to the payoff of the derivative asset in state z.

By mispricing of derivative asset prices, we mean, roughly, that if all individual consumers

are erroneously assumed to share the same scaling factor of dispersion, then the derivative

asset whose payoff is a nonlinear function of the aggregate consumption must necessarily be

mispriced. To formalize this idea, recall first that if all individual consumers have the same

scaling factor α of dispersion, then the representative consumer also has the same scaling factor α

of dispersion. Thus, for the purpose of asset pricing, assuming that all individual consumers have

the same scaling factor α of dispersion amounts to assuming that the representative consumer

has the scaling factor α of dispersion. We shall therefore compare the representative consumer’s

“true” probability density and the “true” state-price density, taking heterogeneous beliefs into

consideration, with their “fictitious” counterparts when the representative consumer is assumed

to have a constant scaling factor of dispersion.

The following assumption is used in the main results of this paper.

Assumption 4 The aggregate consumption c : Z → R++ is a strictly increasing function.

This assumption implies that the orderings of the aggregate consumption and Z coincide. That

is, the aggregate consumption is low at the lower tail of the interval Z and it is high at the

higher tail of interval Z. We can now state the first main result of this paper.

Theorem 1 Under Assumptions 1, 2, 3, and 4, let α ∈ R.

1. If E(p(·|α)c) = E(pc), then there are z1 ∈ Z and z2 ∈ Z such that z1 < z2, p(z) < p(z|α)

whenever z1 < z < z2, and p(z) > p(z|α) whenever z < z1 or z > z2.

2. If E(π(·|α)c) = E(πc), then there are z1 ∈ Z and z2 ∈ Z such that z1 < z2, π(z) < π(z|α)

whenever z1 < z < z2, and π(z) > π(z|α) whenever z < z1 or z > z2.

The equality E(p(·|α)c) = E(pc) means that the value of the scaling factor α in the dispersion

is chosen so that the mean of the aggregate consumption is correctly calculated even when the

heterogeneity in subjective beliefs is ignored. Part 1 of the theorem can thus be interpreted as

saying that the heterogeneity in subjective beliefs puts more weights on the upper and lower tails

of the probability density than in the absence of heterogeneity. Since (p(·|·)) is supermodular,

for any two distinct α and α′ in R, the two probability density functions p(·|α) and p(·|α′) cross

each other only once. Part 1, therefore, implies that the representative consumer’s probability

density function p does not belong to the family (p(·|α))α∈R of probability density functions to

which all individual consumers’ probability density functions belong. In this sense, the family

(p(·|α))α∈R of probability density functions is not closed under aggregation.

The equality E(π(·|α)c) = E(πc) means that the value of the scaling factor α in the disper-

sion is chosen so that the prices of the aggregate consumption is correctly calculated even when
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the heterogeneity in subjective beliefs is ignored. Part 2 of the theorem can thus be interpreted

as saying that the heterogeneity in subjective beliefs puts more weights on the upper and lower

tails of the state-price density than in the absence of heterogeneity. It will be applied to the

next theorem, which identifies the bias in the prediction of derivative asset prices when the

belief heterogeneity is ignored.

The proof of Theorem 1 is given in the appendix. We now move on to the second main

theorem of this paper.

Theorem 2 Under Assumptions 1, 2, 3, and 4, let α ∈ R and suppose that E(π(·|α)c) =

E(πc).

1. If the derivative asset ϕ : R++ → R is convex on R++ but not linear on the support of

P ,6 then E(π(·|α)ϕ(c)) < E(πϕ(c)).

2. If the derivative asset ϕ : R++ → R is concave on R++ but not linear on the support of

P , then E(π(·|α)ϕ(c)) > E(πϕ(c)).

This theorem formalizes the idea that heterogeneous beliefs leads to mispricing of derivative

assets. Part 1 claims that if the payoff of the derivative asset is a convex function of its

underlying asset, the aggregate consumption in our case, then ignoring the heterogeneity in

beliefs and using the state-price density π(·|α) predicts a lower price than the true price. Since

the payoffs of both call and put options are convex functions of that of the underlying asset,

this means that they are underpriced if the heterogeneity in beliefs are ignored. Part 2 is in the

same vein: if the payoff of the derivative asset is a concave function of that of its underlying

asset, then ignoring the heterogeneity in beliefs and using the state-price density π(·|α) predicts

a lower price than the true price. The following proof is much due to Franke, Stapleton, and

Subrahmanyam (1999, Lemma 1).

Proof of Theorem 2 Let ϕ : R++ → R be convex on R++ and not linear on the support of

P . By Assumption 4 and the choice of α, there exist z1 ∈ Z and z2 ∈ Z having the properties

in Part 2 of Theorem 1. Define ψ : R++ → R by

ψ(x) =
ϕ(c(z2))− ϕ(c(z1))

c(z2)− c(z1)
(x− c(z1)) + ϕ(c(z1)).

Then ψ(x) ≥ ϕ(x) whenever c(z1) ≤ x ≤ c(z2), and ψ(x) ≤ ϕ(x) whenever x ≤ c(z1) or

c(z2) ≤ x; and a strict inequality holds on some set of z’s of positive measure. Thus,

(π(z)− π(z|α)) (ϕ(c(z))− ψ(c(z))) ≥ 0

for every z ∈ Z, and a strict inequality holds on some some set of z’s of positive measure. Hence

E ((π − π(·|α)) (ϕ(c)− ψ(c))) > 0.

6That is, there is no linear function ψ : R→ R that coincides with ϕ on the support of P .
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But since

ψ(c) =
ϕ(c(z2))− ϕ(c(z1))

c(z2)− c(z1)
c+

(
ϕ(c(z1))−

ϕ(c(z2))− ϕ(c(z1))

c(z2)− c(z1)
c(z1)

)
,

ψ(c) is a scalar multiple of c added by a constant. Hence, by the choice of α, E ((π − π(·|α))ψ(c)) =

0. Therefore, E ((π − π(·|α))ϕ(c)) > 0, that is, E (π(·|α)ϕ(c)) < E (πϕ(c)). This completes the

proof of Part 1.

Part 2 can be proven analogously. ///

4 Distributions

Assumption 2 requires that the individual consumers’ dispersions be scalar multiples of one an-

other. In this section, we give several classes of parametric examples of probability distributions

for which Assumption 2 is satisfied.

4.1 Normal distributions

Assume that Z = R and P is the normal distribution with mean µ and variance σ2. Assume

that for every i, Pi is the normal distribution with mean µi and variance σ2i . Then, for every i

and z ∈ Z,

pi(z) =

1

(2π)1/2 σi
exp

(
−(z − µi)2

2σ2i

)
1

(2π)1/2 σ
exp

(
−(z − µ)2

2σ2

)

=
σ

σi
exp

(
−1

2

(
1

σ2i
− 1

σ2

)
z2 +

(
µi
σ2i
− µ

σ2

)
z − 1

2

(
µ2i
σ2i
− µ2

σ2

))
.

Hence,

qi(z) = −
(

1

σ2i
− 1

σ2

)
z +

(
µi
σ2i
− µ

σ2

)
.

Thus, Assumption 2 is met if σi = σ for every i (in which case g(z) = 1 and αi = (µi − µ)/σ2).

4.2 Log-normal distributions

Assume that Z = R++ and P is the log-normal distribution with parameters µ and σ. Assume

that for every i, Pi is the log-normal distribution with parameters µi and σi. Then, for every i
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and z ∈ Z,

pi(z) =

1

(2π)1/2 σiz
exp

(
−(ln z − µi)2

2σ2i

)
1

(2π)1/2 σz
exp

(
−(ln z − µ)2

2σ2

)

=
σ

σi
exp

(
−1

2

(
1

σ2i
− 1

σ2

)
(ln z)2 +

(
µi
σ2i
− µ

σ2

)
ln z − 1

2

(
µ2i
σ2i
− µ2

σ2

))
.

Hence,

qi(z) = −
(

1

σ2i
− 1

σ2

)
ln z

z
+

(
µi
σ2i
− µ

σ2

)
1

z
.

Thus, Assumption 2 is met if σi = σ for every i (in which case g(z) = 1/z and αi = (µi−µ)/σ2).

4.3 Gamma distributions

Assume that Z = R++ and P is the gamma distribution with parameters κ and θ. Assume

that for every i, Pi is the gamma distribution with parameters κi and θi. Then, for every i and

z ∈ Z,

pi(z) =

θκii
Γ(κi)

zκi−1i exp(−θiz)

θκ

Γ(κ)
zκ−1 exp(−θz)

=
θκii

Γ(κi)

Γ(κ)

θκ
zκi−κ exp(−(θi − θ)z),

where Γ is the gamma function:

Γ(κ) =

∫ ∞
0

zκ−1 exp(−z) dz.

Hence,

qi(z) = (κi − κ)
1

z
− (θi − θ).

Thus, Assumption 2 is met if κi = κ for every i (in which case g(z) = 1 and αi = −(θi − θ)) or

if θi = θ for every i (in which case g(z) = 1/z and αi = κi − κ).

4.4 Inverse gamma distributions

Assume that Z = R++ and P is the inverse gamma distribution with parameters κ and θ.

Assume that for every i, Pi is the inverse gamma distribution with parameters κi and θi. Then,

for every i and z ∈ Z,

pi(z) =

θκii
Γ(κi)

1

zκi+1
exp

(
−θi
z

)
θκ

Γ(κ)

1

zκ+1
exp

(
−θ
z

) =
θκii

Γ(κi)

Γ(κ)

θκ
z−(κi−κ) exp

(
−(θi − θ)

1

z

)
.
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Hence,

qi(z) = −(κi − κ)
1

z
+ (θi − θ)

1

z2
.

Thus, Assumption 2 is met if κi = κ for every i (in which case g(z) = 1/z2 and αi = θi − θ) or

if θi = θ for every i (in which case g(z) = 1/z and αi = −(κi − κ)).

4.5 Chi distributions

Assume that Z = R++ and P is the chi distribution with the degree κ of freedom. Assume

that for every i, Pi is the gamma distribution with the degree κi of freedom. Then, for every i

and z ∈ Z,

pi(z) =

21−κi/2

Γ
(κi

2

)zκi−1 exp

(
−z

2

2

)
21−κ/2

Γ
(κ

2

)zκ−1 exp

(
−z

2

2

) = 2−(κi−κ)/2
Γ
(κ

2

)
Γ
(κi

2

)zκi−κ.

Hence,

qi(z) = (κi − κ)
1

z
.

Thus, Assumption 2 is met, with g(z) = 1/z and αi = κi − κ.

4.6 Beta distributions

Assume that Z = (0, 1) and P is the beta distribution with parameters η and κ. Assume that

for every i, Pi is the Pareto distribution with parameters ηi and κi. Then, for every i and z ∈ Z,

pi(z) =

zηi−1zκi−1

B(ηi, κi)

zη−1zκ−1

B(η, κ)

,

where B is the beta function:

B(η, κ) =

∫ 1

0
zη−1zκ−1 dz.

Hence,

qi(z) = (ηi − η)
1

z
− (κi − κ)

1

1− z
.

Thus, Assumption 2 is met if ηi = η = 0 for every i (in which case g(z) = 1/(1 − z) and

αi = κi − κ) or if κi = κ for every i (in which case g(z) = 1/z and αi = −(ηi − η)).

4.7 Weibull distributions

Assume that Z = R++ and P is the Weibull distribution with parameters κ and θ. Assume

that for every i, Pi is the Weibull distribution with parameters κi and θi. Then, for every i and
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z ∈ Z,

pi(z) =

κi
θi

(
z

θi

)κi−1
exp

(
−
(
z

θi

)κi)
κ

θ

(z
θ

)κ−1
exp

(
−
(z
θ

)κ) =
κi
θκii

θκ

κ
zκi−κ exp

(
−
((

z

θi

)κi
−
(z
θ

)κ))

Hence,

qi(z) = (κi − κ)
1

z
−
(
κi
θκii

zκi−1 − κ

θκ
zκ−1

)
.

Thus, if κi = κ for every i, then

qi(z) = −
(
κ

θκi
− κ

θκ

)
zκ−1,

and Assumption 2 is met, with g(z) = zκ−1 and αi = − (κ/θκi − κ/θκ).

4.8 Pareto distributions

Let ẑ ∈ R++. Assume that Z = (ẑ,∞) and P is the Pareto distribution with parameter κ.

Assume that for every i, Pi is the Pareto distribution (on (ẑ,∞)) with parameter κi. Then, for

every i and z ∈ Z,

pi(z) =

κiẑ
κi

zκi+1

κẑκ

zκ+1

=
κi
κ
ẑκi−κz−(κi−κ).

Hence,

qi(z) = −(κi − κ)
1

z

and Assumption 2 is met, with g(z) = 1/z and αi = −(κi − κ).

4.9 Poisson distributions

Assume that Z = R+ and P is the Poisson distribution with parameter θ. Assume that for

every i, Pi is the Poisson distribution with parameters θi. Then, for every i and z ∈ {0, 1, . . . },

pi(z) =

exp(−θi)θzi
z!

exp(−θ)θz

z!

=

(
θi
θ

)z
exp(−(θi − θ)).

Although the probability mass function of any Poisson distribution can be defined only at non-

negative integers, the ratio of the probability mass functions of two Poisson distributions can

be defined at all real numbers. Hence

qi(z) = ln
θi
θ

Thus, Assumption 2 is met, with g(z) = 1 and αi = ln(θi/θ).
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4.10 Binomial distributions

Assume that Z = R+ and P is the binomial distribution with n trials and probability θ of

success. Assume that for every i, Pi is the binomial distribution with n trials and probability

θi of success. Then, for every i and z ∈ {0, 1, . . . , n},

pi(z) =

(
n

z

)
θzi (1− θi)n−z(

n

z

)
θz(1− θ)n−z

=

(
θi(1− θ)
θ(1− θi)

)z (1− θi
1− θ

)n

Hence,

qi(z) = ln
θi(1− θ)
θ(1− θi)

= ln θi(1− θ)− ln θ(1− θi).

Thus, Assumption 2 is met, with g(z) = 1 and αi = ln θi(1− θ)− ln θ(1− θi).

4.11 Negative binomial distributions

Assume that Z = R+ and P is the negative binomial distribution with the n successes required

and probability θ of success. Assume that for every i, Pi is the negative binomial distribution

with ni successes required and probability probability θi of success. Then, for every i and

z ∈ {0, 1, . . . , },

pi(z) =

(
z + ni − 1

ni − 1

)
θni
i (1− θi)z(

z + n− 1

n− 1

)
θn(1− θ)z

Hence, if ni = n for every i, then

pi(z) =

(
θi
θ

)n(1− θi
1− θ

)z
and

qi(z) = ln
1− θi
1− θ

= ln(1− θi)− ln(1− θ).

Thus, if ni = n for every i, then Assumption 2 is met, with g(z) = 1 and αi = ln(1−θi)−ln(1−θ).

5 Example

In this section, we give a work-out example on how the heterogeneity in individual consumers’

beliefs induces fatter tails of the representative consumer’s belief. This may be used to explain

how the “true” option price deviates from the price predicted by the Black-Scholes formula.

First, we let Z = R and P be a normal distribution with mean 0 and variance t, where

t ∈ R++. Here t is to be interpreted as the time to maturity of the European call option.

Second, we extend our setting to the case where there are infinitely many consumers by letting
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(I,I , ν) be the probability space of (the names of) consumers in the economy. As before, all

of them have constant and equal constant relative risk aversion γ. For each i, consumer i’s

probabilistic belief Pi is specified by its Radon-Nikodym derivative pi = dPi/ dP with respect

to the objective probability P , which is defined by

pi(z) = exp

(
µ(i)z − (µ(i))2t

2

)
.

This means that Pi is the normal distribution with mean µ(i)t and variance t. Indeed, denote

by Λ the Lebesgue measure on R, then

dP

dΛ
(z) = (2πt)−1/2 exp

(
−z

2

2t

)
,

and hence

dPi
dΛ

(z) =
dPi
dP

(z)
dP

dΛ
(z)

= exp

(
µ(i)z − (µ(i))2t

2

)
(2πt)−1/2 exp

(
−z

2

2t

)
= (2πt)−1/2 exp

(
−(z − µ(i)t)2

2t

)
.

To accommodate a continuum of consumers, the welfare maximization problem (2) is modified

so that

max
(ci)i∈I

∫
I
λ(i)Ui(ci) dν(i)

subject to

∫
I
ci dν(i) = c.

(6)

The welfare maximization problem (3) is modified so that

max
(xi)i∈I∈RI

++

∫
I
λ(i)ui(xi)pi(z) dν(i)

subject to

∫
I
xi dν(i) = x.

(7)
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Then the representative consumer’s belief P0 is given by the Radon-Nikodym derivative7

p(z) =

(∫
I

(λ(i)pi(z))
1/γ dν(i)

)γ
E

((∫
I

(λ(i)pi(c))
1/γ dν(i)

)γ)

=

(∫
I

exp

(
µ(i)z

γ
− (µ(i))2t

2γ

)
(λ(i))1/γ dν(i)

)γ
E

((∫
I

exp

(
µ(i)c

γ
− (µ(i))2t

2γ

)
(λ(i))1/γ dν(i)

)γ) . (8)

By multiplying a positive constant if necessary, we can assume that
∫
I(λ(i))1/γ dν(i) = 1. It

can be shown that if all the µ(i) were equal, then the solution (fi(x, z))i∈I to (3) would be given

by fi(x, z) = (λ(i))1/γx for every (x, z). Thus, if there were no heterogeneity, then (λ(i))1/γ

would be equal to the consumption share of consumer i in the aggregate consumption. Since

this share does not depend on z, it would also be the wealth share of consumer i. When, in fact,

the beliefs are heterogeneous, fi(x, z) depends on z and (λ(i))1/γ does not coincide the wealth

share of consumer i. Yet, Lemma 4.1 of Jouini and Napp (2007) shows that it approximates

the wealth share. Define a probability measure ν∗ on R by

ν∗(B) =

∫
µ−1(B)

(λ(i))1/γ dν(i)

for every B ∈ B(R). Then ν∗ approximates the distribution of the µ(i) in terms of the wealth

share in the economy.

We assume that ν∗ is the normal distribution with mean µ̂ and variance σ̂2. Then, by the

change-of-variable formula,∫
I

exp

(
µ(i)z

γ
− (µ(i))2t

2γ

)
(λ(i))1/γ dν(i)

=

∫
R

exp

(
qz

γ
− q2t

2γ

)
dν∗(q)

=

∫ ∞
−∞

exp

(
qz

γ
− q2t

2γ

)
(2πσ̂2)−1/2 exp

(
−(q − µ̂)2

2σ̂2

)
dq.

Here

exp

(
qz

γ
− q2t

2γ

)
exp

(
−(q − µ̂)2

2σ̂2

)
= exp

(
−1

2

(
t

γ
+

1

σ̂2

)(
q − γµ̂+ σ̂2z

γ + σ̂2t

)2
)

exp

(
1

2

(γµ̂+ σ̂2z)2

γσ̂2(γ + σ̂2t)
− 1

2

µ̂2

σ̂2

)
.

7To be precise, we need to assume that the functions i 7→ µ(i) and i 7→ λ(i) are measurable and satisfy some
integrability conditions.
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Thus, ∫
I

exp

(
µ(i)z

γ
− (µ(i))2t

2γ

)
(λ(i))1/γ dν(i)

=

(
1 +

σ̂2

γ
t

)−1/2
exp

(
1

2

(γµ̂+ σ̂2z)2

γσ̂2(γ + σ̂2t)
− 1

2

µ̂2

σ̂2

)
By (8), p(z) is equal to a positive multiple of

(
1 +

σ̂2

γ
t

)−γ/2
exp

(
1

2

(γµ̂+ σ̂2z)2

σ̂2(γ + σ̂2t)
− 1

2

γµ̂2

σ̂2

)
Since p = dP0/dP , ( dP0/ dΛ)(z) is equal to a positive multiple of

(2πt)−1/2 exp

(
−z

2

2t

)(
1 +

σ̂2

γ
t

)−γ/2
exp

(
1

2

(γµ̂+ σ̂2z)2

σ̂2(γ + σ̂2t)
− 1

2

γµ̂2

σ̂2

)
.

Here,

exp

(
−z

2

2t

)
exp

(
1

2

(γµ̂+ σ̂2z)2

σ̂2(γ + σ̂2t)
− 1

2

γµ̂2

σ̂2

)
= exp

(
−1

2

(z − µ̂t)2

t(1 + (σ̂2/γ)t)

)
.

Thus, ( dP0/ dΛ)(z) is equal to a positive multiple of

(
1 +

σ̂2

γ
t

)−γ/2
(2πt)−1/2 exp

(
−1

2

(z − µ̂t)2

t(1 + (σ̂2/γ)t)

)
=

(
1 +

σ̂2

γ
t

)(1−γ)/2(
2πt

(
1 +

σ̂2

γ
t

))−1/2
exp

(
−1

2

(z − µ̂t)2

t(1 + (σ̂2/γ)t)

)
.

Since ( dP0/ dΛ)(z) integrates to one,

dP0

dΛ
(z) =

(
2πt

(
1 +

σ̂2

γ
t

))−1/2
exp

(
−1

2

(z − µ̂t)2

t(1 + (σ̂2/γ)t)

)
.

Thus P0 is the normal distribution with mean µ̂t and variance t(1 + (σ̂2/γ)t). Since t(1 +

(σ̂2/γ)t) > t, we conclude that the representative consumer’s probabilistic belief is more dis-

persed than the objective probability measure, and also than any individual consumer’s proba-

bilistic belief.

6 Conclusion

In this paper, we have asked the question on how the heterogeneity in individual consumers’

subjective beliefs affect the prices for derivative assets. We have provided a condition on a

family of distributions, which is satisfied by log-normal, Gamma, and many other families of

distributions, that guarantees that heterogeneous beliefs increase the prices for derivative assets

as long as all individual consumers’ beliefs belongs to that family.

17



An important direction of future research is to extend the result of this paper to the case of

a continuous-time economy, along the lines of Jouini and Napp (2007). Such an extension will

allow us to more fully analyze how the discrepancy between the prediction by the Black-Scholes

option pricing formula and the options prices observed in real-world markets can be reconciled

by introducing heterogeneous beliefs.

A Proofs

In this appendix, we give proofs of the results needed to establish our main results. Assumptions

1, 2, and 3 are met throughout.

Taking the logarithm of both sides of (4) and (5), and then differentiating them, we obtain

d

dz
lnπ(z) =

π′(z)

π(z)
= q(z)− 1

s(c(z))
,

d

dz
lnπ(z|α) =

∂π

∂z
(z|α)

π(z|α)
= q(z|α)− 1

s(c(z))

for all z ∈ Z. Thus, for all z∗ ∈ Z and z ∈ Z,

π(z)

π(z∗)
= exp

(∫ z

z∗

(
q(t)− 1

s(c(t))

)
dt

)
,

π(z|α)

π(z∗|α)
= exp

(∫ z

z∗

(
q(t|α)− 1

s(c(t))

)
dt

)
.

Thus, together with the definitions of p and p(·|α), we obtain

p(z)/p(z|α)

p(z∗)/p(z∗|α)
=

π(z)/π(z|α)

π(z∗)/π(z∗|α)
= exp

(∫ z

z∗
(m(t)− α) g(t) dt

)
(9)

for all z∗ ∈ Z and z ∈ Z.

We then obtain the following lemma on the comparison between the “fictitious” probability

density p(·|α) and the “true” probability density p, and between the “fictitious” state-price

density π(·|α) and the “true” state-price density π.

Lemma 1 Let α ∈ R.

1. Let z∗ ∈ Z. If p(z∗) = p(z∗|α) and p′(z∗) ≥ ∂p(z∗|α)/∂z, then p(z) > p(z|α) for every

z > z∗.

2. Let z∗ ∈ Z. If p(z∗) = pα(z∗) and p′(z∗) ≤ ∂p(z∗|α)/∂z, then p(z) > p(z|α) for every

z < z∗.

3. There are no more than two z’s such that p(z) = p(z|α).

4. If there are exactly two z’s, denoted by z1 and z2 with z1 < z2, such that p(z) = p(z|α),

then p(z) < p(z|α) whenever z1 < z < z2; and p(z) > p(z|α) whenever z < z1 or z > z2.
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5. Let z∗ ∈ Z. If π(z∗) = π(z∗|α) and π′(z∗) ≥ ∂π(z∗|α)/∂z, then π(z) > π(z|α) for every

z > z∗.

6. Let z∗ ∈ Z. If π(z∗) = π(z∗|α) and π′(z∗) ≤ ∂π(z∗|α)/∂z, then π(z) > π(z|α) for every

z < z∗.

7. There are no more than two z’s such that π(z) = π(z|α).

8. If there are exactly two such z’s, denoted by z1 and z2 with z1 < z2, then π(z) < π(z|α)

whenever z1 < z < z2; and π(z) > π(z|α) whenever z < z1 or z > z2.

Proof of Lemma 1 Let z∗ be as in the statement of this lemma. Then q(z∗) ≥ q(z∗|α) and

hence m(z∗) ≥ α. Since m is strictly increasing, m(z) > α̂ for every z > z∗. Thus q(z) > q(z|α)

for every z > z∗. By (9), therefore, p(z)/p(z|α) > 1 for every z > z∗. This proves Part 1.

Part 2 can be proved analogously, noticing that∫ z

z∗
(m(t)− α) g(t) dt =

∫ z∗

z
(α−m(t)) g(t) dt.

To prove Part 3, suppose that there are three z’s, denoted as z1 < z2 < z3 such that

p(z) = p(z|α). Then, by applying the contrapositive of Part 1 to z = z2 and z∗ = z3, we obtain

p′(z2) < ∂p(z2|α)/∂z. By applying the contrapositive of Part 2 to z = z2 and z∗ = z1, we obtain

p′(z2) > ∂p(z2|α)/∂z. This is a contradiction. Part 3 is thus proved.

To prove Part 4, apply the contrapositive of Part 1 to z = z1 and z∗ = z2, we obtain

p′(z1) < ∂p(z1|α)/∂z. Similarly, apply the contrapositive of Part 2 to z = z2 and z∗ = z1, we

obtain p′(z2) > ∂p(z2|α)/∂z. These inequalities are sufficient to establish Part 4.

By (9), Parts 5 through 8 can be proved analogously to Parts 1 through 4. ///

The following lemma shows when Parts 4 and 5 of Lemma 1 are applicable.

Lemma 2 Let α ∈ R.

1. If there is a strictly increasing function k : Z → R such that E(pk) = E(p(·|α)k), then

there are exactly two z’s such that π(z) = π(z|α).

2. If there is a strictly increasing function k : Z → R such that E(πk) = E(π(·|α)k), then

there are exactly two z’s such that π(z) = π(z|α).

Proof of Lemma 2 To prove Part 1, by Part 3 of Lemma 1, it suffices to prove that there

are at least two z’s such that p(z) = p(z|α). We shall do so by a contradiction argument.

Indeed, if there were no such z, then p(z) > p(z|α) for every z ∈ Z or p(z) < p(z|α) for every

z ∈ Z, because p and pα are continuous. But then either E(p) > E(pα) or E(p) < E(p(·|α)),

a contradiction to E(p) = E(p(·|α)) = 1. If there were a unique z such that p(z) = p(z|α),

denoted by z0, then the difference p − p(·|α) would change its sign only at z0. Suppose that

p(z) − p(z|α) < 0 for every z < z0 and p(z) − p(z|α) > 0 for every z > z0. Since k is a
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strictly increasing function, (p(z)− p(z|α)) (k(z) − k(z0)) > 0 for every z 6= z0. Since P is not

concentrated on any single point,

E ((p− p(·|α)) (k − k(z0))) > 0.

However, the left-hand side of this inequality is equal to

(E (pk)− E (p(·|α)k))− (E (p)− E (p(·|α))) k(z0) = 0.

This is a contradiction. Hence there are exactly two z’s such that p(z) = pα(z).

Part 2 can be established by using the same argument and Part 7 Lemma 1, it ///

Franke, Stapleton, and Subrahmanyam (1999, Lemma 1) also established Part 6, albeit

under a much more restrictive condition, that the elasticity of π, π′(z)z/π(z), is a strictly

decreasing function of z, while the elasticity of πα is constant.
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