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Abstract

In the Capital Asset Pricing Model, we consider how introducing new tradable assets

will affect the prices of the existing ones. We prove that introducing new tradable assets

into financial markets increases the relative price of the market portfolio with respect to

the risk-free bond, or equivalently, decreases the market price of risk, if the elasticity of the

marginal rates of substitution of the mean for standard deviation with respect to the latter

is greater than one for every consumer; the market price of risk increases if the elasticity is

less than one; and the market price of risk is left unchanged if the elasticity is equal to one.
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1 Introduction

In this paper, we consider how introducing new tradable assets into financial markets will affect

the prices of the existing ones. Our exercise here is of comparative statics type, whereby we

compare two equilibria, one of which is obtained with newly introduced assets and the other

without them. For a reason that will soon become clear, we concentrate on the Capital Asset

Pricing Model (CAPM), in which, by definition, all consumers believe in the same probability

distribution over the states of nature and their utility functions depend only on the mean and

standard deviation of random future consumptions. We further assume that consumption takes

place only in one period and no consumer has any initial endowments of any tradable asset.

Thus all tradable assets under consideration are like futures contracts, that is, for every long

position of every tradable asset, there is a short position of that asset, and introducing new

tradable assets enhance the risk-hedging opportunities for consumers but does not affect any

consumers’ endowments. By the “market portfolio,” we mean the asset whose payout coincides

with the sum of all consumers’ initial endowments. By the “risk-free bond,” we mean the asset

that pays one unit of the good with probability one.

The CAPM admits a very strong characterization of equilibrium asset prices, called the

security market line. To be specific, let’s index the tradable assets by i and denote the random

payout of asset i by mi and its equilibrium price by pi. Denote by qi the return of asset i and

by qi its expected return. Denote by d the payout of the market portfolio and define pd, qd, and

qd to be its price, return, and expected return. The payout of the risk-free bond is denoted by

1. Denote its price and return by p1 and q1, so that q1 = 1/p1. Then, at equilibrium, we must

have

qi − q1 = βi(qd − q1) (1)

for every asset i, where

βi =
C(qi, qd)

V (qd)
,

which is the beta of asset i. We emphasize here that the above equality holds even when the

asset markets are incomplete, as long as both the market portfolio and the risk-free bond must

are tradable and priced.

It would give rise to unnecessary complications to analyze how the values in (1), such as

qi, qd, and βi, for existing tradable assets are affected when some new tradable assets are

introduced, because they are all defined in terms of returns, and the returns are defined by

dividing payouts by prices, the latter of which are endogenously determined at equilibrium. An

equivalent condition of (1) in terms of the payouts mi is that there exist a t ∈ R++ and an

r ∈ R++ such that, for every asset i,1 pi = tE(mi)− rC(mi, d). Since we assume that there is

1By plugging mi = 1 and mi = d and solving the system of two linear equations, we can find that t = p1
and r = (p1E(d)− pd)V (d)−1. The equivalence of the two representations of the security market line is stated in
Duffie (1987).
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no consumption in the first period, we can normalize the asset prices pi so that t = 1:

pi = E(mi)− rC(mi, d). (2)

With this normalization, the risk-free rate is equal to zero and the Sharpe ratio of a portfolio,

that is, the expected excess return of the portfolio divided the standard deviation of its return,

is equal to (q̄− 1)/S(q), where q̄ and S(q) are the mean and standard deviation of the return q

of this portfolio. This ratio is maximized when the payout of the portfolio is equal to d (or its

scalar multiplication), in which case,

q̄ − 1

S(q)
=

E(d)

E(d)− rV (d)
− 1

S(d)

E(d)− rV (d)

=
rV (d)

S(d)
= rS(d).

This is called the market price of risk, which is an increasing function of r. The purpose of this

paper is to find out under what conditions imposed on utility functions we can unambiguously

sign the change in the value of r in (2) when new tradable assets are introduced.

To state our main theorem, index the consumers by h and let, for each h, let Uh be the utility

function of consumer h over mean µ and standard deviation σ of random future consumptions

satisfying ∂Uh/∂σ < 0 and ∂Uh/∂µ > 0. Define

MRSh(σ, µ) = −∂Uh(σ, µ)/∂σ

∂Uh(σ, µ)/∂µ
.

This marginal rate of substitution measures how much the mean of the consumption should

be increased when the standard deviation is increased by one unit, in order for consumer h to

enjoy the same utility level. Then the value

σ

MRSh(σ, µ)

∂MRSh(σ, µ)

∂σ
(3)

is the elasticity of the marginal rate of substitution with respect to standard deviation σ. This

elasticity is thus greater than one if and only if a 1% increase in the standard deviation increases

the marginal rate of substitution by more than 1%.

Suppose now that the risk-free bond and the market portfolio (and possibly others) are

traded but the markets are incomplete, in the sense that at least one consumer’s initial en-

dowments cannot be fully hedged (replicated) by any portfolio of the tradable assets. Then

imagine that new tradable assets are introduced into markets and the unhedgeable part of the

consumer’s initial endowments can be reduced by incorporating some of the new tradable assets

in the hedging portfolio. Our main result roughly says that if the elasticity (3) is larger than one

at every (σ, µ) and for every consumer h, then, for every equilibrium without the new tradable

assets, there is an equilibrium with them at which the value of r in (2) is lower; if the elasticity

is smaller than one, then the value of r is higher at some equilibrium with the new tradable

3



assets; and if the elasticity equals one, the value remains the same at some equilibrium with

the new tradable assets. If we take for granted the existence and uniqueness of an equilibrium

for each set of tradable assets, then we can simply say: if the elasticity (3) is larger than one

at every (σ, µ) and for every consumer h, then the value of r in (2) is lower the more complete

the asset markets are; if the elasticity (3) is smaller than one at every (σ, µ) and for every

consumer h, then the value of r in (2) is higher the more complete the asset markets are; and

if the elasticity (3) is equal to one at every (σ, µ) and for every consumer h, then the value of r

in (2) is unchanged even when the asset markets become more complete.

To see the applicability of the theorem, consider the following family of utility functions Uh

over mean and standard deviation parameterized by τh > −1 and δh > 0:

Uh(σ, µ) = µ− δh
τh + 2

στh+2. (4)

It is straightforward to check that

σ

MRSh(σ, µ)

∂MRSh(σ, µ)

∂σ
= τh + 1.

Hence if τh > 0, then introduction of new tradable assets decreases the value of r; if τh < 0,

then it increases the value of r; and if τh = 0, then the value of r remains constant. Recall that

the utility function with τh = 0, Uh(σ, µ) = µ− (δh/2)σ2, is obtained when an expected utility

function exhibits the constant coefficient δh of absolute risk aversion and the random future

consumptions follow Gaussian distributions. It is well known (shown by Oh (1990, 1996))

that, in this case, the relative prices of existing assets among themselves are not affected by

introduction of new tradable assets. Our main theorem thus provides an alternative proof of

this well known fact, but it shows more than that: in terms of elasticities of marginal rates

of substitution between mean and standard deviation, the well known case is the critical case,

above which introduction of new tradable assets increases the price of the market portfolio and

below which the former decreases the latter. In particular, the parameter τh in the functional

form (4) measures the deviation from the case where the market price of risk is unchanged when

new tradable assets are introduced.

We should also note that, when it comes to evaluating the effect on the prices of existing

assets by introduction of new tradable assets, the marginal rates of substitution MRSh(σ, µ),

which were shown by Lajeri and Nielsen (2000) to represent degrees of absolute risk aversion over

the choice between mean and standard deviation, are not, for themselves, a very helpful piece of

information. What is of crucial importance is how much in percentage they will increase as the

standard deviation increases. Indeed, in the above example (4), MRSh(σ, µ) can be arbitrarily

increased or decreased at every (σ, µ) by varying parameter δh even when keeping τh = 0; but

varying δh does not affect at all the sign in the change in the value of r when new tradable

assets are introduced.
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Another example of the unitary elasticity case is

Uh(σ, µ) = µ− δh
2

(σ2 + µ2)

with δh > 0. This is obtained when an expected utility function is a quadratic function

uh(w) = w − (δh/2)w2. It is then routine to show that the elasticity of the marginal rates

of substitution is always equal to one. Our main theorem again provides an alternative proof

of another well-known fact, shown in Oh (1990, 1996), that the relative prices of existing assets

among themselves do not depend on the market (in-)completeness when the utility functions

are quadratic.

A more general example is the case when Uh is a quadratic function of σ and µ,

Uh(σ, µ) = c0hσ
2 + c1hµ+ c2hµ

2,

where c0h, c
1
h, and c2h are constants. It is again routine to show that the elasticity of the marginal

rates of substitution is always equal to one.

Our main result has a nice welfare implication of introduction of new tradable assets. It

is often argued that whether it is beneficial to consumers is ambiguous, because the negative

pecuniary externality arising from the changes in the prices of existing assets may outweigh the

benefit of enhanced risk-hedging opportunities. Suppose now that all consumers have utility

functions whose elasticity is larger than one. Suppose also that one of them has an initial risky

endowment which perfectly negatively correlated with the market portfolio. Since holding the

market portfolio reduces the risk from his initial endowment, his portfolio at equilibrium must

consist of a positive amount of the market portfolio and some amount of the risk-free bond.

Since the market portfolio is assumed to be traded even before introduction of new tradable

assets, they do not enhance his risk-hedging opportunities in any essential way. According to

our theorem, the price of the market portfolio goes up as a consequence of introducing new

tradable assets. We can thus conclude, with no formal calculation, that this consumer becomes

worse off after introduction of new tradable assets.

Our main result requires all consumers to have the elasticities of marginal rates of substitu-

tion greater than one, or all having the common elasticity equal to one, or all having elasticities

less than one. It does not allow some consumers to have elasticities greater than one and, at the

same time, others to have elasticities less than one. It would be nice if we could establish the

same sort of predictions on the directions of the change in r when the elasticities greater and

less than one coexist. The natural candidate that aggregates different consumers’ elasticities is

the representative consumer’s counterpart. We shall, however, show by means of an example

that the representative consumer’s elasticity may not provide a correct prediction. Indeed, it is

completely possible that his elasticity is greater than or less than one, and yet the value of r

may change in either direction depending on the payouts of new tradable assets.

Our main theorem is not a comparative statics exercise assuming the existence of the two

equilibria to be compared. Rather, when the existence of an equilibrium is assumed, it estab-
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lishes the existence of another equilibrium having a particular property in relation to the first

one. The proof builds on the beta relation and the mutual fund theorem.

As for the literature, Oh (1990, 1996) obtained the security market line and the mutual fund

theorem in the CAPM with incomplete markets, where some consumers’ initial endowments

cannot be hedged or replicated by the tradable assets. He (and his predecessors referred to in

his papers) also proved that introducing new tradable assets does not change the equilibrium

prices of the existing ones if the consumers have quadratic utility functions or if they have

negative exponential utility functions and consumptions follow Gaussian distributions. Our

result not only covers these invariance conditions but predicts the direction of changes in the

prices of the market portfolio (the market price of risk) when these conditions are not met.

Dybvig and Ingersoll (1982) gave an example to show that when at least one consumer

has a utility function different from quadratic or exponential one and, thus, not leading to

mean-variance utility, the beta relation or the asset pricing formula (2) may not hold in the

presence of newly introduced tradable assets even when it holds in their absence. While their

and our papers both deal with the impact of introducing new tradable assets on the prices of

the existing ones, their focus was on the validity of the beta relation, and our focus is on the

market price of risk in a model in which the beta relation is satisfied before and after introducing

new tradable assets. Detemple and Selden (1991) provided a general equilibrium model similar

to but different from the CAPM, in which there are the risk-free bond and a stock (which

thus coincides with the market portfolio) initially traded in markets, and introduction of an

option on the stock increases the stock price. Our result, however, does not restrict tradable

assets to be introduced and, yet, unambiguously predicts the direction of the changes in the

prices of the market portfolio. Weil (1992) showed that, under some assumptions on utility

functions, the equity premium puzzle of Mehra and Prescott (1985) can be partially solved by

the incompleteness of asset markets. His model is different from ours, most importantly, in

that only the two polar cases, the complete asset markets and the asset markets consisting only

of the risk-free bond and the market portfolio, are compared. Our model can compare two

arbitrary asset markets, as long as one can be obtained by adding tradable assets to the other.

Note that some economically interesting phenomena, such as some consumers getting worse off

as a result of introducing new tradable assets, do not occur when the comparison is restricted

to the two polar cases.

Dana (1999) and Hens and Löffler (1996) found that the proof of the existence of an equilib-

rium in the CAPM with complete markets can be based on the intermediate value theorem, the

one-dimensional version of the fixed point theorem. Underlying this approach are the security

market line and the mutual fund theorem, because these results allow them to reduce the task

of finding an equilibrium to one of solving a single equation by a single unknown.

Elul (1999) showed that if the markets are sufficiently incomplete and there are only a few

types of consumers, then it is generically possible to introduce a new tradable asset that leads

to a Pareto-improving equilibrium allocation. A key step in his proof is to show that there

generically exists a non-redundant asset whose introduction does not change the prices of any
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existing assets. This property does not hold in our framework. The genericity condition he

used refers to a suitably defined set of utility functions and initial endowments, in which utility

functions depending only on mean and standard deviation constitute a negligible set. Hara

(2011) proved that if there are only finitely many states, S in number, then, regardless of the

consumers’ preferences or initial endowments, there is a sequence of S assets such that if those

S assets are introduced into markets one by one in the order of the sequence, then the asset

markets eventually become complete, and every time a new tradable asset is introduced, the

prices of the previously introduced ones remain unchanged. This result indicates that the main

result of this paper depends crucially on the assumption that the risk-free bond and the market

portfolio are always available for trade.

After some earlier versions of this paper were written, Koch-Medina and Wenzelburger

(2018), based on Wenzelburger (2010) who assumed that the market portfolio is tradable, pub-

lished some results that are also included in an earlier version of this paper. Among others,

they claimed that their comparative statics result (Proposition 8 of their paper) extended our

main result (Theorem 1 of this paper) to the case in which the market portfolio is non-tradable,

that is, the market portfolio cannot be hedged or replicated by any portfolio of tradable assets.

In Section 4, we give two reasons why, contrary to their claim, their comparative statics result

does not really extend our main result, one pertaining to the proof method and the other to

the proxy of the market portfolio when it is not tradable.

This paper is organized as follows. Section 2 sets up the model. Section 3 gives the security

market line and the mutual fund theorem in incomplete asset markets. Section 4 establishes

the main result of this paper. Section 5 shows that it is impossible to use the utility function

of the representative consumer to predict the direction of changes in the prices of the market

portfolio induced by introduction of new tradable assets. Section 6 concludes, mentioning the

possibility of extending the results in this paper to other versions of the CAPM. The proof of

the main result is given in the Appendix.

2 The Model

The uncertainty of the economy is described by a probability space Ω. There is only one physical

good available in every state and the commodity space X is taken to be the L2 space over Ω. For

simplicity of exposition, throughout this paper, we identify an element of the L2 space, which

is defined to be an equivalent class of random variables that are equal to one another with

probability one, with a random variable itself in the equivalent class. The mean E : X → R,

variance V : X → R, standard deviation S : X → R, and covariance C : X × X → R are

defined in the standard way.

Each consumer, indexed h ∈ {1, 2, . . . ,H}, has a utility function Uh : R+ ×R → R over

the standard deviations and the means of random consumptions. We assume that Uh is twice

continuously differentiable and satisfies ∂Uh(σ, µ)/∂σ ≤ 0 and ∂Uh(σ, µ)/∂µ > 0 for every

(σ, µ) ∈ R+ × R; and ∂Uh(σ, µ)/∂σ < 0 if σ > 0 and ∂Uh(σ, µ)/∂σ = 0 if σ = 0. The last

assumption is satisfied if Uh is derived from a differentiable expected utility function. Moreover,
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for every (σ, µ) ∈ R+ ×R, the Hessian matrix of Uh at (σ, µ),
∂2Uh
∂σ2

(σ, µ)
∂2Uh
∂σ∂µ

(σ, µ)

∂2Uh
∂σ∂µ

(σ, µ)
∂2Uh
∂µ2

(σ, µ)

 , (5)

is negative definite on the line orthogonal to the gradient vector (∂Uh(σ, µ)/∂σ, ∂Uh(σ, µ)/∂µ).2

This condition implies that Uh is strictly quasi-concave.3 It also has some implications on the

domain and differentiability of demand functions, to be seen in the proof of our main theorem

(Theorem 1).

Define Wh : X → R by Wh(xh) = Uh(S(xh), E(xh)) for every xh ∈ X. Then Wh assigns

the utility level he obtains from a random consumption xh ∈ X. The initial endowments of

consumer h are denoted by dh ∈ X. They cannot be directly traded and will be hedged or

replicated, possibly only partially, by portfolios of tradable assets, to be defined in the next

paragraph. Write d =
∑H

h=1 dh ∈ X. This is the aggregate initial endowment. We assume

throughout this paper that V (d) > 0. In the language of finance, Uh represents consumer h’s

attitude towards risk and dh is his initial risk exposure.

For simplicity of exposition, we define a consumer’s utility maximization problem and an

equilibrium of asset markets directly in terms of market spans and state price functions. A

market span is a linear subspace M of X, to be understood as the linear subspace spanned

by the payouts of the tradable assets; the vectors on M are thus understood as representing

the payouts of portfolios. In the literature, the asset markets are often said to be incomplete

whenever M 6= X, but, in our model, what is more important is whether all the consumers’

initial endowments dh belong to M . Thus, we say that the asset markets are incomplete if

dh 6∈M for some h, that is, some consumer’s initial endowment cannot be hedged or replicated

by any portfolio of tradable assets. In other words, even when M 6= X, we deem the asset

markets complete as long as dh ∈ M for every h. LeRoy and Werner (2014, Chapter 19) gave

a detailed analysis on non-tradable endowments. In our main result (Theorem 1), we assume

that the aggregate initial endowment d belongs to M . We thus call the portfolio with payouts

d the market portfolio.

A state price function is a real-valued linear function p : M → R on a given market span M .

We will be mainly concerned with those in the form p(m) = E((1− r(d−E(d)1))m) for every

m ∈ M , where 1 is the element of X that takes value 1 at every ω ∈ Ω, which can be thought

of as representing the payout of the risk-free bond. As pointed out by Dybvig and Ingersoll

(1982), if r > 0 is large, the state price density 1 − r(d − E(d)1) may take negative values

2This is equivalent to

∂2Uh

∂σ2
(σ, µ)

(
∂Uh

∂µ
(σ, µ)

)2

− 2
∂2Uh

∂σ∂µ
(σ, µ)

∂Uh

∂σ
(σ, µ)

∂Uh

∂µ
(σ, µ) +

∂2Uh

∂µ2
(σ, µ)

(
∂Uh

∂σ
(σ, µ)

)2

< 0.

This inequality was used in the proof of Lemma 5 of Koch-Medina and Wenzelburger (2018), on which their
Propositions 8 and 9 are based.

3Unlike Dana (1999), we do not assume strict concavity. Thus, the domain of prices under which there is an
optimal portfolio may not be connected, because the consumption set X is not bounded from below.
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with positive probabilities. As such, our state price function may admit arbitrage opportunities

while observing the law of one price.

The utility maximization problem of consumer h under the market span M is then

max
xh∈X

Wh(xh),

s.t. xh − dh ∈M,

p(xh − dh) ≤ 0.

(6)

Note that the linearity of M and p means that there are no transaction costs or short-sales

constraints.

We say that a state price function p and a consumption allocation (x∗h)h∈{1,2,...,H} consti-

tute an equilibrium under the market span M if, for every h, x∗h is a solution to the above

maximization problem under the market span M , and
∑H

h=1 x
∗
h = d.

3 Characterization of an equilibrium in the CAPM

In this section we present, without proof, a proposition on the characterization of an equilibrium

when a market span is fixed. This is an intermediate step toward our main theorem, where we

compare equilibria under two market spans.

We first introduce some notation. For each subspace M of X, denote by orthM the orthog-

onal complement of M , by πM the orthogonal projection from X onto M, and by PM the set of

all state price functions defined on M. Let N = {x ∈ X | E(x) = 0}. Then πN (x) = x− E(x)1

for every x ∈ X and πN (d) is the “de-meaned” market portfolio. Denote by M the set of all

market spans that contain 1 and d.

The following characterization theorem is essentially due to Oh (1990, 1996) and can be

shown along the lines of Dana (1999). We omit the proof.

Proposition 1 Let M ∈M and suppose that p ∈ PM and (x∗h)h∈{1,2,...,H} ∈ X
H constitute an

equilibrium for M.

1. There exist a t ∈ R++ and an r ∈ R++ such that

p(m) = E((t1− rπN (d))m) (7)

for all m ∈M.

2. For every h, there exist an a∗h ∈ R+ and a b∗h ∈ R such that

x∗h = a∗hπN (d) + b∗h1 + πorthM (dh).

Part 1 of this proposition provides a pricing formula known as the security market line. It

implies that the state price density is a strictly positive combination of the risk-free bond 1

and the negative of the de-meaned market portfolio, −πN (d). Note that the relative prices of
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assets on N is invariant to the choice of M. The condition that t be positive is equivalent to

saying that the risk-free bond must have a positive price. The condition that r be positive is

equivalent to saying that the de-meaned market portfolio πN (d) must have a negative price,

which is also equivalent to a strictly positive market price of risk and to a strictly positive slope

of the security market line.

Part 2 of Proposition 1 is the mutual fund theorem, with a modification due to incomplete

asset markets. It says that every consumer’s equilibrium consumption must consist of three

terms. The first one is made of the risk-free bond and the second one is made of the market

portfolio. Note that everyone holds a non-negative amount of the market portfolio, while some

consumers may take a negative amount of (that is, sell short of) the risk-free bond. The third

term represents the initial endowment risk that a consumer cannot hedge by trading in the asset

markets; this would be zero were the asset markets to be complete.

It is easy to extend Proposition 1 to the case where the market portfolio or the risk-free

bond (or either) is not traded.4

Proposition 2 Let M be a linear subspace of X. Suppose that p ∈ PM and (x∗h)h∈{1,2,...,H} ∈
XH constitute an equilibrium for M and that, for every h, there exists an xh ∈ X such that

xh − dh ∈M and Wh(xh) > Wh(x∗h).

1. There exist a t ∈ R++ and an r ∈ R++ such that

p(m) = E((t1− rπN (d))m)

for all m ∈M.

2. For every h, there exist an a∗h ∈ R+ and a b∗h ∈ R such that

x∗h = a∗hπN∩M (d) + b∗hπM (1) + πorthM (dh).

4 Comparative Statics with Variable Market Spans

In this section, we present our main theorem regarding the effect of introducing new tradable

assets on the price (and thus the expected return) of the market portfolio. To begin, define

MRSh : R+ ×R→ R+ by

MRSh(σ, µ) = −∂Uh(σ, µ)/∂σ

∂Uh(σ, µ)/∂µ
.

This marginal rate of substitution measures how much the mean of the consumption should be

increased when the standard deviation is increased by one unit, in order to keep the consumer

on the same utility level as before. By our assumption on Uh, for every (σ, µ) ∈ R+ × R,

MRSh(σ, µ) > 0 if and only if σ > 0.

4Dana (1999, Remark 2.4) gave this result when the risk-free bond is not traded but the market portfolio is.
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Definition 1 We say that Uh has elastic marginal rates of substitution (EMRS for short) if,

for every (σ, µ) ∈ R++ ×R,

σ

MRSh(σ, µ)

∂MRSh(σ, µ)

∂σ
> 1.

We say that Uh has inelastic marginal rates of substitution (IMRS for short) if, for every

(σ, µ) ∈ R++ ×R,
σ

MRSh(σ, µ)

∂MRSh(σ, µ)

∂σ
< 1.

We say that Uh has unitarily elastic marginal rates of substitution (UMRS for short) if, for

every (σ, µ) ∈ R++ ×R,
σ

MRSh(σ, µ)

∂MRSh(σ, µ)

∂σ
= 1.

The definition should be clear. The left hand side is the elasticity of the marginal rates of

substitution with respect to standard deviations, when the mean is fixed. If the elasticity is

larger than one, then a 1% increase in the standard deviation increases the marginal rate of

substitution by more than 1%, in which case we say that Uh has elastic marginal rate of sub-

stitution. Inelastic and unitarily elastic marginal rates of substitutions are defined analogously.

These definitions are, in fact, stronger than is necessary to establish our main theorem. The

slightly weaker conditions, such as the function σ 7→ MRSh(σ, µ)/σ is strictly increasing, strictly

decreasing, or constant for every h and every µ, are sufficient to prove and illustrates it. Yet,

we use the above conditions for the simplicity of exposition.

According to Part 1 of Proposition 1, for every M ∈ M , and for every equilibrium price

function p ∈ PM , there exists an r ∈ R+ such that p(m) = E((1 − rπN (d))m) for every

m ∈M. For each r ∈ R+, define ϕ(r) ∈ PX by ϕ(r)(m) = E((1− rπN (d))m). Since ϕ(r)(d) =

E(d) − rV (d), the relative price of the market portfolio with respect to the risk-free bond is

a decreasing function of r. The market price of risk is nothing but the highest Sharpe ratio,

which is attained by the market portfolio and equal to rS(d). Thus, it is an increasing function

of r. Define P ∗M as the set of all r ∈ R+ such that ϕ(r) is an equilibrium state price function

for M . Below is the main result of this paper. Its proof is given in the appendix.

Theorem 1 Let M ∈M and L ∈M and suppose that M ⊆ L. Suppose moreover that there

are an h and a z ∈ L \M such that C(z, dh) 6= 0.

1. If every Uh has EMRS, then, for every rM ∈ P ∗M , there exists an rL ∈ P ∗L such that

rM > rL.

2. If every Uh has EMRS, then, for every rL ∈ P ∗L, there exists an rM ∈ P ∗M such that

rM > rL.

3. If every Uh has IMRS, then, for every rM ∈ P ∗M , there exists an rL ∈ P ∗L such that

rM < rL.
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4. If every Uh has IMRS, then, for every rL ∈ P ∗L, there exists an rM ∈ P ∗M such that

rM < rL.

5. If every Uh has UMRS, then P ∗M = P ∗L.

This theorem is concerned with the equilibrium prices under two market spans M and L.

Imagine, as an example, that the market span M is generated by a set of existing tradable assets

and, then, expanded to L as a consequence of introducing new tradable assets into markets.

Given a state price function p, the solution x∗h to the utility maximization problem (6) under

M also satisfies the constraints under L. Yet, since a wider range of consumption plans is

available under L than under M through trades of new tradable assets, x∗h may no longer be

the solution under L. That is, an expansion of the market span from M to L will change the

consumers’ demands for the market portfolio, and these changes, in turn, affect the equilibrium

asset prices. When the asset prices are given through a state price function p = ϕ(r), a change

in equilibrium prices are summarized by a change in the value of r. Recall that a decrease in

r means an increase in the price of the market portfolio and a decrease in the market price of

risk, and an increase in r means a decrease in the price of the market portfolio and an increase

in the market price of risk.

Specifically, part 1 claims that if every Uh has EMRS, then, for every equilibrium before

the introduction of the new tradable assets, there exists an equilibrium after the introduction

at which the price of the market portfolio is higher. Part 2 claims that, with EMRS, for every

equilibrium after the introduction, there exists an equilibrium before the introduction at which

the price of the market portfolio is lower. Parts 1 and 2 are equivalent if the equilibria under

M and L are unique,5 in which case, we can simply say that an expansion of the market span

increases the price of the market portfolio and decreases the market price of risk. If both sets of

equilibria, P ∗M and P ∗L, are compact, then Part 1 is equivalent to minP ∗M > minP ∗L and Part 2

is equivalent to maxP ∗M > maxP ∗L. In other words, the interval between the highest and lowest

equilibrium values of r, [minP ∗M ,maxP ∗M ] , is a strictly decreasing function of the market span

M with respect to the standard order ≥ on R. The symmetric interpretation can be given to

parts 3 and 4. Part 5 says that the set of the equilibrium price functions are not affected by

market spans under the assumption of UMRS.

Since M ⊆ L, orthM ⊇ orthL and, hence, V (πorthM (dh)) ≥ V (πorthL(dh)) for every h.

The assumption that there are an h and a z ∈ L\M such that C(z, dh) 6= 0 means that for some

consumer h, a new tradable asset gives an additional hedging opportunity. For this consumer h,

we have V (πorthM (dh)) > V (πorthL(dh)). Thus, the expansion of the market span from M to L

does not increases the variance of the unhedgeable part of initial endowments for any consumer,

and does indeed decrease the variance for some consumer.

To give an intuition of the proof of the theorem, assume for simplicity that the market

market portfolio d has zero mean and unit variance, and consider the case where L = X, that

5Dana (1999), Hens and Löffler (1996), Hens, Laitenberger, and Löffler (2000) also provided sufficient con-
ditions for the uniqueness of an equilibrium, which are closely related with the condition by Lajeri and Nielsen
(2000) for decreasing (or increasing) risk aversion.
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is, L represents the complete markets. Suppose that the asset prices are given by p = ϕ(r).

When consumer h holds a portfolio of ah units of the market portfolio and bh units of the risk-

free bond, he receives ahd+ bh1 from this portfolio. If the asset markets are complete, then he

can perfectly hedge his initial endowments and hold positions only in the market portfolio and

the risk-free bond. Given the mean-variance utility function Uh and the state price function

p = ϕ(r), it is, in fact, optimal for him to do so. Thus the resulting consumption is ahd+ bh1,

with mean bh and standard deviation ah, from which he enjoys utility level Uh(ah, bh). The

first-order condition for optimality is that

MRSh(ah, bh) = r. (8)

If, on the other hand, the market span M is incomplete, then he can only hedge his initial

endowments up to the point where its remaining part has zero covariance with any consumption

plan on the market span M , and it is optimal to do so, given the mean-variance utility function

Uh and the state price function p = ϕ(r). The resulting consumption is ahd+ bh1 + πorthM (dh)

with mean bh and standard deviation
(
a2h + θ2h

)1/2
, where πorthM (dh) is the unhedgeable part of

the initial endowments (the residual of its orthogonal projection to M) and θh = S (πorthM (dh)),

and the resulting utility level is Uh

((
a2h + θ2h

)1/2
, bh

)
. Under the same state price function ϕ(r)

as in the case of complete markets, would it still be optimal to hold the same position (ah, bh)?

Since, by the chain rule differentiation, the partial derivative of Uh

((
a2h + θ2h

)1/2
, bh

)
with

respect to ah is equal to

∂Uh

((
a2h + θ2h

)1/2
, bh

)
∂σ

ah(
a2h + θ2h

)1/2V (d), (9)

and since p(πN (d))/p(1) = rV (d), the first-order condition for the optimality of (ah, bh) is

MRSh

((
a2h + θ2h

)1/2
, bh

)
(
a2h + θ2h

)1/2 ah = r. (10)

By comparing with (8), we can see that whether (10) holds or not depends on whether the

function σ 7→ MRSh(σ, µ)/σ is constant or not. But this is determined by whether the elasticity

is equal to one or not. If the elasticity is equal to one, the first-order condition is still satisfied at

the same (ah, bh) as in the case of complete markets, and the aggregate demand for the market

portfolio remains the same. Thus the equilibrium value of r, the equilibrium price of the market

portfolio, and the market price of risk remain the same. This proves part 5 of our main result.

If, instead, the elasticity is greater than one, then the function σ 7→ MRSh(σ, µ)/σ is strictly

increasing and the left-hand side of (10) is greater than the right-hand side. This means that in

the case of incomplete markets, the demand by every consumer h for the market portfolio is, if

well defined, less than ah, the aggregate demand for the market portfolio is lower, the value of r

is higher, the price of the market portfolio is lower, and the market price of risk is higher than
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in the complete-market case. This is part 1 of the theorem. The other cases can be analogously

explained.

Koch-Medina and Wenzelburger (2018) claimed that their Proposition 8 extends Theorem 1

of this paper to the case in which the market portfolio is non-tradable, that is, d 6∈M . We now

give two reasons why, contrary to their claim, the former does not really extend the latter. The

first reason is concerned with the proof method, which is valid even when the market portfolio

is tradable, and the second reason is concerned with the change in the market price of risk,

which is specific to the non-tradable market portfolio.

First, although both Theorem 1 of this paper and Proposition 8 of their paper explore

the consequence of changes in variances of the unhedgeable parts of initial endowments, these

changes are necessarily discrete in our setting as they are caused by an expansion (or shrinkage)

of a market span, while Koch-Medina and Wenzelburger (2018) assumed that they can be

continuous, without specifying the cause of these changes. The proof method are accordingly

different. The proof of their Lemma 5, on which their Proposition 8 is based, was to apply the

implicit function theorem to establish that in the case of EMRS, a continuous increase in the

variance of the unhedgeable part of a consumer’s initial endowments lowers his demand for the

market portfolio, which, in turn, implies that the equilibrium price of the market portfolio is

decreased and the market price of risk is increased. Because of the very nature of the implicit

function theorem, the result is applicable when the changes in the variance of the unhedgeable

parts of initial endowments are small, or when (the changes may be large but) the domain on

which the aggregate demand is well defined is connected. However, as explained in Footnote

3, the domain may not be connected, and, since the expansion of the market span may well

cause a large change in variances, the variance after the expansion may not belong to the same

connected component as the variance before the expansion. The proof method of Proposition 8

of Koch-Medina and Wenzelburger (2018) is, therefore, not applicable to Theorem 1. We prove

the theorem by applying the intermediate value theorem, which can deal with large, discrete

changes in the variances of the unhedgeable parts of initial endowments, while paying special

attention to the possibility that the domain on which the aggregate demand is well defined fails

to be connected.

Second, although Proposition 8 of Koch-Medina and Wenzelburger (2018) allows the market

portfolio d to be outside the market span M , its price is, then, not defined and we cannot

compare the the prices of the market portfolio before and after the change in the market span.

We can only compare the prices of the proxy of the market portfolio6 before and after the

change in the market span, and the orthogonal projection πM (d) of the market portfolio d

on the market span M appears to be the most natural candidate for the proxy, as it is the

consumption plan on M that best approximates d. Yet, the change in M typically induces a

change in the variance V (πM (d)) of the proxy of the market portfolio, which is a cause of the

change in the price of the market portfolio that is quite different, in nature, from a change

in the risk-hedging opportunities. The only parameter that can be meaningfully compared

6Roll (1977) argued that the difficulty to identify the “right” proxy makes it impossible to test the validity of
the CAPM.
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between two market spans is, therefore, the market price of risk, that is, the highest Sharpe

ratio that can be attained by the portfolios of the tradable assets. Recall that Theorem 1 can

be restated as a result on the changes in the market price of risk, because the market price of

risk is an increasing function of r. As we will see, however, the result no longer holds without

the assumption that the market portfolio belongs to the market span. Thus, Proposition 8 of

Koch-Medina and Wenzelburger (2018) does not extend Theorem 1.

An example of a single-consumer economy suffices to show that Theorem 1 cannot be ex-

tended to the case where the market portfolio is outside the market span. Let the commodity

space X be spanned by three elements 1, d0, and d1, where d0 and d1 have zero means, unit

variances, and zero covariance. In other words, {1, d0, d1} is an orthonormal basis of X. Sup-

pose that the single consumer’s utility function U1 satisfies (4), where δ1 = 1 but τ1 is arbitrary.

His initial endowment is represented by d1 (or it can be d1 plus a positive multiple of 1 to

guarantee its positive expected return), which is also the market portfolio. Let η ∈]0, 1[ and

define dη = (1− η2)1/2d0 + ηd1. Then E(dη) = 0, V (dη) = 1, and C(d1, dη) = η. Let M be the

linear subspace of X that is spanned by 1 and dη, and L be the linear subspace that is spanned

by 1, dη, and d1. Then, both M and L contain the risk-free bond 1; L contains the market

portfolio d1 but M does not; M is included in L; and L = X, that is, the asset markets are

complete under the market span L. Since πM (d1) = dη, dη is the proxy of the market portfolio

d1 under the market span M .

Since the market portfolio d1 is contained in the market span L, we can define the set P ∗L as

in Section 4. On the other hand, the corresponding set for M needs to be carefully defined, as

d1 is not contained in M . Here, we define P ∗M as the set of r ∈ R++ such that the state price

function p(m) = E((1− rdη)m) is an equilibrium state price function for M . We have chosen,

in the definition of the state price functional, the proxy dη of the market portfolio d1 on M , not

the market portfolio d1 itself, because r should be equal to the market price of risk on M . More

precisely, when the state price function is E((1− rdη)m), the highest Sharpe ratio that can be

attained by the consumption plans on M is equal to r, but, when the state price function is

E((1− rd1)m), the market price of risk, or the highest Sharpe ratio that can be attained by the

the consumption plans on M , is equal to ηr. Thus, the coefficient r gives the correct market

price of risk in p(m) = E((1− rdη)m).

We now claim that P ∗M = {η} and P ∗L = {1}, that is, writing rM = η and rL = 1, we

have rM < rL regardless of the value of τ1. If Theorem 1 were valid for this comparison, then,

according to its part 1, we would have rM > rL whenever τ1 > 0. This shows that Theorem 1,

without additional assumptions, cannot be extended to the case where the market portfolio is

outside the market span.

The proof of P ∗M = {η} and P ∗L = {1} is easy. First, note that the solution to the single

consumer’s utility maximization problem (6) coincides with d1, and that ∂U(S(d1), E(d1))/∂σ =

−1 and ∂U(S(d1), E(d1))/∂µ = 1. Second, for every α ∈ R close to 0, S(d1 + αdη) = (1 +

2ηα+ α2)1/2 and E(d1 + αdη) = 0. Their derivatives with respect to α evaluated at α = 0 are

equal to η and 0. Third, since (−1, 1) · (η, 0) = −η, the equilibrium price of dη is equal to −η,
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which implies that rM = η. We can similarly show that rL = 1.7 The proof also shows the logic

behind our example: the proxy of the market portfolio becomes a better one as the market span

expands; and since the single consumer consumes the market portfolio regardless of the market

span, the better the proxy, the lower its price. Since the market price of risk is nothing but the

price of the proxy, multiplied by −1, it increases as the market span expands, regardless of the

single consumer’s utility function.

5 Representative Consumer

In this section we show by means of an example that when some consumers have EMRS and

others IMRS, the equilibrium price of the market portfolio may increase or decrease by the

introduction of a new tradable asset, depending on its payout structure. This example also

shows that, while the elasticity of marginal rate of substitution of mean for standard deviation

is a well defined concept even for the representative consumer, it cannot be used to predict the

directions of changes in the equilibrium prices of the market portfolio.

To be specific, we consider the parametric family of utility functions that appeared in the

introduction:

Uh(σ, µ) = µ− δh
τh + 2

στh+2. (11)

Given the quasi-linearity of these utility functions with respect to mean, we define the represen-

tative consumer’s utility function as the value function, denoted by W , of the utilitarian social

welfare maximization problem, where x ∈ X is an aggregate consumption:

max
(xh)h∈XH

∑
Wh(xh)

s.t.
∑

xh = x.
(12)

We now show that W depends only on mean and standard deviation of x, and quasi-linear with

respect to mean. Indeed, let (x∗h)h be a solution. Then, for every h, there are a σh ∈ R+ and a

µh ∈ R such that x∗h = σhS(x)−1x+µh1, that is, x∗h is a nonnegative multiple of the aggregate

endowment, added by a scalar multiple of the payoff of the risk-free bond. In fact, if not, then

the orthogonal projections the x∗h onto the plane spanned by x and 1 would attain a higher

value of the objective function
∑
Wh(xh). In symbols, let M be the plane spanned by x and

1, then Wh (πorthM (x∗h)) ≥ Wh (x∗h) for every h, and it would hold as a strict inequality for

some h. Moreover, if σh < 0 for some h, then a transfer of ε(S(x))−1x, where ε is a sufficiently

small positive number, from consumer k with σk > 0 to this consumer h would increase both

consumers’ utility levels. Thus σh ≥ 0 for every h. Since
∑
x∗h = 0,

∑
µh = 0, and changing the

values of µh under this constraint does not change the value of the objective function
∑
Wh(xh)

because of the quasi-linearity of Uh with respect to µ. Thus the maximization problem (12) can

7The first-order condition (10) is not applicable to the market span M in this example, because (9) does not
hold, which is, in turn, because d 6∈M .
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be reduced to the following problem.

min
(σh)h∈RH

+

∑ δh
τh + 2

στh+2
h ,

s.t.
∑

σh = S(x).

(13)

Denote the value function of this minimization problem by u, and define a utility function U

over mean µ and standard deviation σ by U(σ, µ) = µ − u(σ), then W (x) = U(S(x), E(x))

and, thus, U represents the representative consumer’s utility function W in terms of mean and

standard deviation, and is quasi-linear with respect to the mean.

We now show how the representative consumer’s marginal rates of substitution of the stan-

dard deviation for the mean and their elasticities are related to the individual consumers’

counterparts. Denote the representative consumer’s marginal rate of substitution, derived from

U , by MRS, then it depends on σ but not on µ and satisfies MRS(σ) = u′(σ). Thus

σ

MRS(σ)

d MRS(σ)

dσ
=
u′′(σ)σ

u′(σ)
, (14)

that is, the elasticity of the marginal rate of substitution of U equals the Arrow-Pratt measure

of relative risk aversion of u, except that there is no −1 multiplied, because u is convex. The

same can be said of for the individual consumers’ utility functions Uh. We can thus apply part

2 of Corollary 7 and part 2 of Proposition 15 of Hara, Huang, and Kuzmics (2007) to show that

(14) is a decreasing function of σ, starting the largest τh and converging to the smallest τh. This

implies that if the standard deviation S(x) of the aggregate consumption x, which is equal to

the market portfolio d at equilibrium, is small, then (14) takes a value close to the largest τh at

σ = S(x), and if S(x) is large, then (14) takes a value close to the smallest τh at σ = S(x).

Now consider the following example of an economy. There are four consumers. They all

have utility functions Uh of the form (11). Consumers h = 1, 2 have the same value of τh, which

is greater than one. Consumers h = 3, 4 have the same value of τh, which is less than one. Let

d̂, y1, y2 constitute an orthonormal basis of N and define the consumers’ initial endowments

by

d1 = c(d̂+ y1),

d2 = c(d̂− y1),

d3 = c(d̂+ y2),

d4 = c(d̂− y2),

where c is a positive constant. The market portfolio equals cd̂, and its standard deviation

is equal to c. Assume that the market portfolio and the risk-free bond are initially the only

tradable assets.

If c is small, then the standard deviation of the market portfolio is small, and the repre-

sentative consumer’s elasticity is greater than one; if c is large, then the standard deviation of
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the market portfolio is large, and the representative consumer’s elasticity is less than one. If

we predicted the direction of changes in the equilibrium prices of the market portfolio based

only on the representative consumer’s elasticity, then we would conclude that the introduction

of new tradable assets will increase the price of the market portfolio when c is small, and it will

decrease the price if c is large.

However, if a tradable asset with payout y1 is introduced, the variances of the unhedgeable

parts of the initial endowments of consumers 1 and 2 are decreased but those of consumers 3

are 4 are not. Thus, consumers 1 and 2 trade it, but consumers 3 and 4 do not. Moreover,

by τ1 = τ2 > 1, the price of the market portfolio goes up. On the other hand, if a tradable

asset with payout y2 is introduced, consumers 3 and 4 trade it but consumers 1 and 2 do not.

Moreover, by τ3 = τ4 < 1, the price of the market portfolio goes down. This is regardless of the

values of c. Thus the prediction based on the representative consumer’s elasticity is incorrect.

In the above example, the values for the δh were not specified. Depending how we specify

them, each consumer can be a buyer or seller of the market portfolio. Thus, the incorrect

prediction of the equilibrium price of the market portfolio leads to an incorrect prediction of

pecuniary externalities and welfare consequences of new tradable assets that we mentioned

in the introduction. Jerison (2016) also pointed out the possibility of incorrect prediction of

welfare consequences when it is based on the representative consumer’s utility function. His

point is different from ours in an important respect. While the above example involves the

incorrect predictions of both equilibrium prices and welfare consequences, he showed that even

when the representative consumer’s utility function gives rise to the aggregate demand function

of the economy on the entire range of prices and wealth, thereby predicting equilibrium prices

correctly, it need not correctly assess the welfare gains or loss associated with a change from

the status quo.

6 Conclusion

We have established sufficient conditions in terms of utility functions under which introducing

new tradable assets increases or decreases the price of the market portfolio (or the market price

of risk) at equilibrium in the CAPM. Those conditions are sufficient to derive the direction of

changes in the price of the market portfolio unambiguously regardless of what the new tradable

assets under consideration are like. It is also noteworthy that these conditions are on the

elasticity of the marginal rates of substitution between mean and standard deviation, not on

the marginal rate of substitution itself.

It would be very nice if we could include the non-random first-period consumption in our

model and find out conditions under which the relative price between the first-period consump-

tion and the risk-free bond can be affected by introduction of new tradable assets: this is the

way Weil (1992) considered his “risk-free rate puzzle.” This task, however, seems a rather

difficult one when dealing with arbitrary market spans, because we can no longer apply the

intermediate value theorem for a comparative statics result, and this is, in turn, because, at

least, two relative prices are involved in the analysis, that between the first-period consumption
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and the risk-free bond and that between the risk-free bond and the market portfolio. To ex-

tend our results to the case with the first-period consumption, therefore, it will be necessary to

assume that the utility function is separable among the first-period consumptions, the mean of

the second-period consumption, and the standard deviation of the second-period consumption;

and also that the aggregate demand function has the gross substitute property.

A Proofs

We start with a lemma on the first-order necessary and sufficient condition for the solution to

the utility maximization problem (6).

Lemma 1 Let M ∈M , r ∈ R+, and xh ∈ X. Then xh solves the utility maximization problem

(6) when p = ϕ(r) if and only if there is an (ah, bh) ∈ R+ ×R such that

xh = ahπN (d) + bn1 + πorthM (dh) (15)

bh − rV (d)ah = E(dh)− rC(d, dh), (16)

r =
MRSh

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthM (dh))

)1/2 ah. (17)

This lemma implies that xh solves the utility maximization problem (6) when p = ϕ(0),

that is, r = 0, if and only if xh = E(dh)1 + πorthM (dh), that is, ah = 0 and bh = E(dh).

Proof of Lemma 1 Suppose first that xh solves the utility maximization problem (6) when

p = ϕ(r). The first equality (15) can be derived just like part 2 of Proposition 1. Then ah ≥ 0.

By plugging it into the budget constraint with equality, ϕ(r)(xh − dh) = 0, we obtain (16).

To prove (17), note first that if (15) is met, then S(xh) =
(
a2hV (d) + V (πorthM (dh))

)1/2
and

E(xh) = bh. Thus,

Wh (ahπN (d) + bn1 + πorthM (dh)) = Uh

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
.

Hence,

dWh

dah
((ahπN (d) + bn1 + πorthM (dh)) =

dUh
dσ

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthM (dh))

)1/2 V (d)ah, (18)

dWh

dbh
((ahπN (d) + bn1 + πorthM (dh)) =

dUh
dµ

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
, (19)

The first-order necessary and sufficient condition for xh = ahπN (d) + bn1 + πorthM (dh) to solve
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the utility maximization problem is that

rV (d) ≥ −

dWh

dah
((ahπN (d) + bn1 + πorthM (dh))

dWh

dbh
((ahπN (d) + bn1 + πorthM (dh))

,

which holds as a strict inequality if ah > 0. But since ∂Uh(0, µ)/∂σ = 0 for every µ ∈ R, this

holds as an equality even when ah = 0, in which case r = 0. By plugging (18) and (19) into the

left-hand side of the above equality, we obtain (17).

Suppose conversely that there is an (ah, bh) ∈ R+ ×R for which (15), (16), and (17) hold.

Since Uh is quasi-concave, so is Wh. Thus the three equalities imply that it is impossible to

increase Wh (ahπN (d) + bn1 + πorthM (dh)) by choosing other values of (ah, bh) subject to (16).

Since (16) is equivalent to ϕ(r)(xh − dh) = 0, xh is the solution to the utility maximization

problem (6) with the additional constraint that xh = ahπN (d) + bn1 + πorthM (dh) for some

(ah, bh). But since the solution to (6) must be in this form for some (ah, bh), xh is, in fact, the

solution to (6). ///

For each h and M ∈ M , let TMh be the set of those r ∈ R+ for which the maximization

problem (6) has a solution under p = ϕ(r) and, for each r ∈ TMh , denote the (ah, bh) as in (15)

by (aMh (r), bMh (r)) ∈ R+ ×R. We have thus defined a function aMh : TMh → R+. By Lemma 1,

0 ∈ TMh , and, for every r ∈ TMh , aMh (r) = 0 if and only if r = 0.

Lemma 2 Let M ∈M .

1. TMh is an open subset of R+ and aMh is continuously differentiable.

2. Let r ∈ R+ and (ah, bh) ∈ R+ ×R, and suppose that bh − rV (d)ah = E(dh)− rC(d, dh).

Then r ∈ TMh and aMh (r) ≤ ah if and only if

r ≤
MRSh

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthM (dh))

)1/2 ah. (20)

3. For every r ∈ R+ \TMh and for every sequence (rn) in TMh , if rn → r, then aMh (rn)→∞.

Part 1 of this lemma is clear. Part 3 is the so-called boundary behavior of the demand

function for the market portfolio. It states that as the price of the market portfolio, at which

consumer h’s demand is well defined, approaches a level at which consumer h’s demand is not

well defined, his demands for the market portfolio become large without bounds. It is similar

to part (iii) of Lemma 2 of Koch-Medina and Wenzelburger (2018) but different from it in that

we do not have to compare the level r with the asymptotic slope of an indifference curve of

consumer h. Part 2 gives an equivalent condition for r ∈ TMh and, in addition, an upper bound

on the demand for the market portfolio. It implies that if r ∈ TMh and (20) fails to hold, then

aMh (r) > ah. If (20) holds as an equality, then aMh (r) = ah by Lemma 1. Thus, part 2 implies
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that if r ∈ TMh and

r ≥
MRSh

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthM (dh))

)1/2 ah,

then aMh (r) ≥ ah. This fact will also be used in the proof of Theorem 1.

Proof of Lemma 2 Define UMh : R+ ×R by letting

UMh (ah, bh) = Uh

((
V (d)a2h + πorthM (dh)

)2
, bh

)
for every (ah, bh). Then UMh satisfies the condition on the Hessian matrix (5) when Uh is

replaced by UMh . Thus, by Proposition 2.7.2 of Mas-Colell (1985), the demand function,

for (ah, bh) derived from UMh is defined on an open subset of the price space R+ × R++

and, on the subset, the demand function is continuously differentiable. Since UMh (ah, bh) =

Wh (ahπN (d) + bn1 + πorthM (dh)) for every (ah, bh), this establishes part 1.

Part 2 is true when r = 0, because, then, E(dh)1+πorthM (dh) solves the utility maximization

problem (6). Suppose that r > 0. Suppose also that (20) holds and consider the function

a 7→
MRSh

((
V (d)a2 + V (πorthM (dh))

)1/2
, E(dh)− r(C(d, dh)− V (d)a)

)
(V (d)a2 + V (πorthM (dh)))1/2

a− r.

This function takes a negative value when a = 0 and a nonnegative value when a = ah. Thus, by

the intermediate value theorem, there is an a ∈]0, ah] at which this function takes zero. Then,

by Lemma 1, the utility maximization problem is solved by aπN (d) + (E(dh) − r(C(d, dh) −
V (d)a))1 + πorthM (dh). Thus r ∈ TMh and a = aMh (r) ≤ ah. Suppose conversely that r ∈ TMh
and aMh (r) ≤ ah. If aMh (r) = ah, then, by Lemma 1, (20) holds with an equality. Suppose that

aMh (r) < ah. Then bMh (r) < bh as well. Since UMh
(
aMh (r), bMh (r)

)
≥ UMh (ah, bh) and UMh is

quasi-concave,

∂UMh
∂ah

(ah, bh)
(
aMh (r)− ah

)
+
∂UMh
∂bh

(ah, bh)
(
bMh (r)− bh

)
≥ 0,

that is,

−

∂UMh
∂ah

(ah, bh)

∂UMh
∂bh

(ah, bh)

≥
bMh (r)− bh
aMh (r)− ah

.

By (18) and (19), the left-hand side is equal to

MRSh

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthM (dh))

)1/2 V (d)ah.
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Since bh − rV (d)ah = E(dh)− rC(d, dh) = bMh (r)− rV (d)aMh (r), the right-hand side is equal to

rV (d). Plugging these results, we obtain (20).

We prove part 3 by contradiction. Suppose that the conclusion were false. Then there would

be an r ∈ R+\TMh , a sequence (rn) in TMh , and an ah ∈ R+ such that rn → r and aMh (rn)→ ah.

Then bMh (rn)→ E(dh)− r(C(d, dh)− V (d)ah) and (ah, E(dh)− r(C(d, dh)− V (d)ah)) satisfies

(15), (16), and (17). By Lemma 1, this means that ahπN (d)+bn1+πorthM (dh) solves the utility

maximization problem. This is a contradiction to the assumption that r ∈ R+ \ TMh . ///

Define TM =
⋂H
h=1 T

M
h . Then TM consists of those ∈ R+ for which the aggregate demand∑H

h=1 a
M
h (r) is well defined. Define the aggregate demand function aM : TM → R+ by aM (r) =∑H

h=1 a
M
h (r). Then 0 ∈ TM , and, for every r ∈ TM , aM (r) = 0 if and only if r = 0. For each

r ∈ TM , let

xMh = aMh (r)πN (d) +
(
E(dh)− r(C(d, dh)− V (d)aMh (r)

)
1 + πorthM (dh),

then, by d ∈M ,∑
h

xMh = aM (r)πN (d) + E(d)− r
(
C(d, d)− V (d)aM (r)

)
1 + πorthM (d)

= aM (r)πN (d) +
(
E(d)− rV (d)(1− aM (r))

)
1.

Thus,
∑

h x
M
h = d if and only if aM (r) = 1. Hence, r ∈ P ∗M if and only if aM (r) = 1.

Proof of Theorem 1

1. We consider two cases according to whether [0, rM ] ⊆ TL or not.

First, consider the case where [0, rM ] 6⊆ TL.8 Since 0 ∈ TM , part 1 of Lemma 2 implies

that there is a (unique) r ∈ ]0, rM ] such that [0, r[ ⊆ TL and r 6∈ TL. Then there is an h

such that r 6∈ TLh . By part 3 of Lemma 2, for every sequence (rn)n in TLh , if rn → r as

n → ∞, then aLh (rn) → ∞ as n → ∞. Thus, aL(rn) → ∞ as n → ∞. Since aL(0) = 0,

the intermediate value theorem implies that there is an rL ∈ ]0, r[ such that aL(rL) = 1.

Thus rL < rM and rL ∈ P ∗L.

Next, consider the case where [0, rM ] ⊆ TL. Since M ⊂ L and V (πorthM (dh)) ≥
V (πorthL (dh)) for every h, and it holds as a strict inequality for some h, because there

are an h and a z ∈ L \M such that C(z, dh) 6= 0. Since Uh has EMRS for every h, by

(17),

rM ≥
MRSh

((
V (d)

(
aMh (rM )

)2
+ V (πorthL (dh))

)1/2
, bMh (rM )

)
(
V (d)

(
aMh (rM )

)2
+ V (πorthL (dh))

)1/2 aMh (rM ), (21)

8This is the case that was not covered by the proof of Lemma 5 of Koch-Medina and Wenzelburger (2018),
on which their Proposition 8 is based. An analogous case appears in the proofs of Parts 2, 3, and 4 as well.
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and it holds as a strict inequality for some h. Since rM ∈ TL, by (20), aLh (rM ) ≥ aMh (rM )

for every h, and it holds as a strict inequality for some h. Thus aL(rM ) > aM (rM ) = 1.

Hence, by the intermediate value theorem, there is an rL ∈ ]0, rM [ such that aL(rL) = 1.

Thus rL < rM and rL ∈ P ∗L.

2. Just like (21), we can show that

rL ≤
MRSh

((
V (d)

(
aLh (rL)

)2
+ V (πorthM (dh))

)1/2
, bLh (rL)

)
(
V (d)

(
aLh (rL)

)2
+ V (πorthM (dh))

)1/2 aLh (rL)

for every h, with a strict inequality for some h. By part 2 of Lemma 2, rL ∈ TMh and

aMh (rL) ≤ aLh (rL) for every h, with a strict inequality for some h. Thus rL ∈ TM and

aM (rL) < aL(rL) = 1.

We consider two cases according to whether [rL,∞[⊆ TM or not. If [rL,∞[ 6⊆ TM , then,

by part 3 of Lemma 2, there is a (unique) r ∈ ]rL,∞[ such that [rL, r[ ⊆ TM and r 6∈ TM .

Then, as we saw in the proof of part 1 of this theorem, for every sequence (rn)n in TM ,

if rn < r for every n and rn → r, then aL(rn)→∞. Since aM (rL) < 1, the intermediate

value theorem implies that there is an rM ∈ ]rL, r[ such that aM (rM ) = 1. Thus rM > rL

and rL ∈ P ∗L. If [rL,∞[⊆ TM , let r ∈ R+ satisfy r > rL and, for every h,

r ≥
MRSh

((
V (d)a2h + V (πorthM (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthM (dh))

)1/2 ah

where (ah, bh) = (C(d, dh)/V (d), E(d)). Since r ∈ TM , part 2 of Lemma 2 implies that

aMh (r) ≥ C(d, dh)/V (d) for every h. Thus aM (r) ≥ 1.9 Thus, by the intermediate value

theorem, there is an rM ∈ ]rL, r] such that aM (rM ) = 1. Thus rM > rL and rM ∈ P ∗M .

3. The proof of this part is analogous to that of part 2. We can show that

rM ≤
MRSh

((
V (d)

(
aMh (rM )

)2
+ V (πorthL (dh))

)1/2
, bMh (rM )

)
(
V (d)

(
aMh (rM )

)2
+ V (πorthL (dh))

)1/2 aMh (rM )

for every h, with a strict inequality for some h. Thus rM ∈ TL and aL(aM ) < 1.

We consider two cases according to whether [rM ,∞[⊆ TL or not. If [rM ,∞[ 6⊆ TL, then

there is a (unique) r ∈ ]rM ,∞[ such that [rM , r[ ⊆ TL and r 6∈ TL. Then, for every

sequence (rn)n in TL, if rn → r, then aL(rn) → ∞. Hence there is an rL ∈ ]rM , r[ such

that aL(rL) = 1. Thus rL > rM and rL ∈ P ∗L. If [rM ,∞[⊆ TL, let r ∈ R+ satisfy r > rM

9The proof of Theorem 3 of Koch-Medina and Wenzelburger (2018) contained this argument. An analogous
argument appears in Part 3 as well.
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and, for every h,

r ≥
MRSh

((
V (d)a2h + V (πorthL (dh))

)1/2
, bh

)
(
V (d)a2h + V (πorthL (dh))

)1/2 ah

where (ah, bh) = (C(d, dh)/V (d), E(d)). Then aL(r) ≥ 1. Thus, there is an rL ∈ ]rM , r]

such that aL(rL) = 1. Thus rL > rM and rL ∈ P ∗L.

4. The proof of this part is analogous to that of part 1. We consider two cases according to

whether [0, rL] ⊆ TM or not.

First, consider the case where [0, rL] 6⊆ TM . Then there is a (unique) r ∈ ]0, rL] such that

[0, r[ ⊆ TM and r 6∈ TM . Then, for every sequence (rn)n in TM , if rn → r as n → ∞,

then aM (rn)→∞ as n→∞. Hence, there is an rM ∈ ]0, r[ such that aM (rM ) = 1. Thus

rM < rL and rM ∈ P ∗M .

Next, consider the case where [0, rL] ⊆ TM . We can show that

rL ≥
MRSh

((
V (d)

(
aLh (rL)

)2
+ V (πorthM (dh))

)1/2
, bLh (rL)

)
(
V (d)

(
aLh (rL)

)2
+ V (πorthM (dh))

)1/2 aLh (rL),

and it holds as a strict inequality for some h. Thus aM (rL) > 1. Hence, by the interme-

diate value theorem, there is an rM ∈ ]0, rL[ such that aM (rM ) = 1. Thus rM < rL and

rM ∈ P ∗M .

5. Since every Uh has UMRS, for every M ∈ M , every L ∈ M , r ∈ R+, and (ah, bh) ∈
R+ ×R, (17) holds if and only if it holds when M is replaced by L. Thus aM (r) = aL(r)

and, hence, P ∗M = P ∗L.

///
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