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Abstract

Given two pairs of expected utility functions, we formalize the notion that one

expected utility function is more risk-averse than the other in the first pair to a

greater extent than in the second pair. We do so by assuming that the utility

functions are twice continuously differentiable and satisfy the Inada condition, and,

in each of the two pairs, using the function that transforms the derivatives of one

expected utility function to the derivatives of the other, rather than the function

that transforms one expected utility function to the other. This definition allows

us to interpret the quantitative results on the ambiguity aversion coefficients of the

smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005) in some cases

not covered by the more-ambiguity-averse-than relation that they conceived.
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1 Introduction

An expected utility function (also known as a Bernoulli utility function) is said to be

more risk-averse than another if the former is a concave transformation of the latter.

The purpose of this paper is, when two pairs of expected utility functions are given, to

formalize the idea that one expected utility function is more risk-averse than the other

in the first pair to a greater extent than in the second pair. In symbols, if v1 and u1

constitute the first pair and v2 and u2 constitute the second pair, then we wish to give

a rigorous and sufficiently general definition to the statement that v1 is more risk-averse

than u1 to a greater extent than v2 is more risk-averse than u2. In other words, based on

∗I thank Shoko Negishi, Jonathan Newton, Tadashi Sekiguchi, and, especially, Sujoy Mukerji for
helpful comments. This research is funded by the Open Research Area (ORA) for the Social Sciences
“Ambiguity in Dynamic Environments.”
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the standard more-risk-averse-than relation, we introduce a new binary relation over the

differences in risk aversion between two expected utility functions.

The expected utility function v1 is more risk-averse than u1, and v2 is more risk-averse

than u2, if and only if there are two concave functions φ1 and φ2 such that v1 = φ1 ◦ u1
and v2 = φ2 ◦u2. The most natural approach to formalize that statement that v1 is more

risk-averse than u1 to a greater extent than v2 is more risk-averse than u2, is to require

φ1 to be more concave than φ2. But this statement makes sense only if φ1 and φ2 have

the same domain, that is, u1 and u2 have the same range. In many applications, this

assumption is violated.

Our approach is, instead, to assume that the utility functions are twice continuously

differentiable and satisfy the Inada condition, and use the function that transforms the

derivatives of one utility expected function to the derivatives of the other expected utility

function. In symbols, we define two functions ψ1 : R++ → R++ and ψ2 : R++ → R++

by v′1 = ψ1 ◦ u′1 and v′2 = ψ2 ◦ u′2 and compare ψ1 and ψ2. These functions ψ1 and ψ2

have the same domain because the utility functions u1 and u2 are assumed to satisfy the

Inada condition, and in our definition we rank ψ1 and ψ2 in terms of their elasticities

rather than the curvature (which is used when comparing φ1 and φ2). We will also give

necessary and sufficient conditions of this definition in terms of choice behavior between

a random and a deterministic consumption plans.

This study is motivated by the smooth ambiguity model of Klibanoff, Marinacci, and

Mukerji (2005, hereafter KMM). Their utility functions are defined in the form of nested

expected utilities, in which the inner expected utilities, and the associated conditional

certainty equivalents, are taken for a utility function u conditional on probability measures

on the state space, and the outer expected utility is taken for a utility function v over the

conditional certainty equivalents with respect to what they termed as the second-order

belief. The decision maker is ambiguity-averse if the outer utility function v is more risk-

averse than the inner utility function u. Theorem 2 of KMM proved that the curvature

(concavity) of the tranformation function φ satisfying v = φ ◦ u measures his ambiguity

aversion, much in the same way as the Arrow-Pratt measure of absolute risk aversion

measures risk aversion.

As emphasized by KMM themselves, a caveat on their more-ambiguity-averse-than

relation is in order. The theorem implies that whenever one utility function is more

ambiguity-averse than another, they share essentially the same inner utility function u.

But it is a common practice in empirical studies to estimate or calibrate the curvature

of the transformation function φ (which is the KMM measure of ambiguity aversion) or

of the outer utility function v, without fixing the inner utility function u a priori. Thus,

for two ambiguity-averse utility functions having two different inner utility functions,

we cannot conclude that one is more ambiguity-averse than the other even when the

transformation function φ of the former is more concave than the latter. This significantly
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limits the scope within which we can interpret and compare various quantitative results.

Our definition, on the other hand, is tailored to the need for a wider scope of numerical

comparison. It can be applied to two pairs of which the inner utility functions are different

and, in addition, has a clear equivalent condition in terms of the decision makers’ choices.

Thus, it allows the researcher to make a quantitative assessment on the KMM measure

of ambiguity aversion with no reference to the associated Arrow-Pratt measure for pure

risks.1

This paper is organized as follows. Section 2 lays out the setup of the paper and

gives some preliminary results. Section 3 presents a new relation between two pairs of

expected utility functions. Section 4 gives examples of the new relation for the case of

constant absolute or relative risk aversion. Section 5 provides an essentially equivalent

necessary and sufficient condition for the new relation in terms of the decision makers’

choice behavior. Section 6 discusses applications to the utility functions of KMM. Section

7 gives a summary and suggests a couple of directions of future research. All proofs are

in the appendix.

2 Setup

Let I be a non-degenerate (containing at least two points) open interval of R and u :

I → R. Assume that u is thrice continuously differentiable and that u′′ < 0 < u′. We

also impose the Inada condition, that is, u′(x) → 0 as x → sup I, and u′(x) → ∞ as

x→ inf I. We call these conditions the basic conditions.

Denote by the range of u : I → R by Ranu, that is, Ran u = u(I) = {u(x) | x ∈ I}.
Ranu′ is analogously defined. Since u′′ < 0, the Inada condition is equivalent to Ranu′ =

R++.

For a utility function u : I → R, we define the Arrow-Pratt measure of absolute risk

aversion a(·, u) : I → R++ by letting a(x, u) = −u′′(x)/u′(x) for every x ∈ I. For x > 0,

we define the Arrow-Pratt measure of relative risk aversion as r(x, u) = −u′′(x)x/u′(x).
The utility functions that exhibit constant absolute or relative risk aversion satisfy

the basic conditions, but their ranges are different. In fact, let I = R and, with γ > 0,

u(x) = −1

γ
exp(−γx). (1)

Then u has the constant coefficient γ of absolute risk aversion, and Ranu = −R++. Let

1A similar complication arises in recursive utility as well. For example, in presenting functional
forms of recursive utility, Epstein (1992, equalities (4.23) and (4.24)) restricted the constant coefficient
of relative risk aversion to be at most one and the intertemporal elasticity of substitution to be at least
one. But when it comes to estimating these values in any quantitative work, other functional forms are
also necessary.
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I = R++ and, with γ > 0,

u(x) =

 lnx if γ = 1,
x1−γ

1− γ
otherwise.

(2)

Then u has the constant coefficient of relative risk aversion, and

Ranu =


R++ if γ < 1,

R if γ = 1,

−R++ if γ > 1.

The following proposition covers the case where the coefficients of relative risk aversion

are not constant.

Proposition 1 Suppose that an expected utility function u : R++ → R satisfies the basic

conditions.

1. If there is a b > 0 such that r(x, u) ≤ 1 for every x ≥ b, then Ranu is not bounded

from above.

2. If there are a b > 0 and a g ∈ (0, 1) such that r(x, u) < g for every x ≤ b, then

Ranu is bounded from below.

3. If there is a b > 0 such that r(x, u) ≥ 1 for every x ≤ b, then Ranu is not bounded

from below.

4. If there are a b > 0 and a g ∈ (1,∞) such that r(x, u) > g for every x ≥ b, then

Ranu is bounded from above.

Since these results will not be used in the subsequent analysis and their proofs are

elementary, we omit them. The message of the proposition is that the range of a utility

functions is closely related to the risk attitude that it represents and, hence, an additional

restriction on it may well turn out to be a significant restriction on the risk attitude. Since

the range of a utility function is the domain of the function that transforms the utility

function to another one, the implication of this proposition for a formal definition of the

statement that one utility function is more risk-averse than the other in the first pair to a

greater extent than in the second is that the function that transforms one utility function

to another should not be used. We will, instead, use the function that transforms the

derivative of a utility function to the derivative of another.
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3 Definition of the new relation

To understand our definition of the ranking over more-risk-averse-than relations, which

we will later give, the following proposition is helpful.

Proposition 2 Suppose that two expected utility functions u : I → R and v : I → R

satisfy the basic conditions. Define ψ : R++ → R++ by ψ = v′ ◦ (u′)−1. Then, for every

x ∈ I,
a(x, v)

a(x, u)
=
ψ′(u′(x))u′(x)

ψ(u′(x))
. (3)

It is easy to check that ψ′ > 0. As y → 0, (u′)−1(y) → sup I. Thus, ψ(y) =

v′ ((u′)−1(y)) → 0. Analogously, ψ(y) → ∞ as y → ∞. Define the elasticity of the

transformation function ψ, e(·, ψ) : R++ → R++ by

e(y, ψ) =
ψ′(y)y

ψ(y)
.

Then (3) can be rewritten as
a(x, v)

a(x, u)
= e(u′(x), ψ). (4)

Proposition 2 implies that v is at least as risk-averse as u if and only if v′ is an elastic

transformation (that is, everywhere having elasticity greater than or equal to one) of

u′. In particular, a proportional increase in the Arrow-Pratt measure of absolute risk

aversion from u to v is equal to the elasticity of the transformation.

Definition 1 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R satisfy the basic conditions. Write ψ1 = v′1 ◦ (u′1)
−1 and

ψ2 = v′2 ◦ (u′2)−1.

1. We say that v1 is more risk averse than u1 at least to the same extent as v2 is more

risk averse than u2, if

e(y1, ψ1) ≥ e(y2, ψ2) (5)

for every y1 ∈ R++ and y2 ∈ R++. We then write (u1, v1) ▶ (u2, v2).

2. We say that v1 is more risk averse than u1 to a greater extent than v2 is more risk

averse than u2, if

e(y1, ψ1) > e(y2, ψ2) (6)

for every y1 ∈ R++ and y2 ∈ R++. We then write (u1, v1) ▷ (u2, v2).

In the definition, the domains I1 and I2 may be different, and the ranges Ranu1,

Ran v1, Ranu2, Ran v2 may all be different. The two levels of marginal utility, y1 and y2
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that appear on each of the two sides of (5) and (6) may be taken to be different. If they

were taken to be equal, then the conditions would be written as

e(y, ψ1) ≥ e(y, ψ2) or e(y, ψ1) > e(y, ψ2), (7)

for every y ∈ R++, and we may say that ψ1 is more elastic as ψ2. If, in addition, we

followed the terminology of the strongly-more-risk-averse-than relation of Ross (1981),

we could say that that ψ1 is strongly more elastic as ψ2. By (3), (6) is equivalent to the

conditions that

a(x1, v1)

a(x1, u1)
>
a(x2, v2)

a(x2, u2)
(8)

for every x1 ∈ I1 and x2 ∈ I2.

Both ▶ and ▷ are transitive, ▷ is irreflexive, but ▶ is neither reflexive nor irreflexive.

Moreover, ▷ is included in the asymmetric (strict) part of ▶ (that is, if (u1, v1) ▷ (u2, v2),

then (u1, v1) ▶ (u2, v2) and (u2, v2) ̸▶ (u1, v1)), and the former is strictly smaller than

the latter.2

Instead of saying that u1 is more risk-averse than v1 to a greater extent than u2 is

more risk-averse than v2, we could say more informally that u1 is more risk-averse than

v1, and even more so than u2 is more risk-averse than v2. For brevity, we shall thus refer

to the binary relations ▷ and ▶ as the even-more-risk-averse-than relation in the rest of

this paper.

In concluding this section, we point out that the definition covers the case where

e(yn, ψn) < 1, that is, the change from un to vn, in fact, reduces risk aversion. No

mathematical argument needs to be modified in the subsequent analysis. Thus, the

expression, “more risk averse to a greater extent”, should be considered as a simplifying

terminology that covers the case where un is more risk averse than vn as well as the case

where un is less risk averse than vn.

4 Examples

In this section, we give examples of the even-more-risk-averse-than relation that involve

constant absolute or relative risk aversion. These examples involves transformation func-

tions ψn from u′n to v′n that have constant elasticities. The first, simplest, example deals

with constant absolute risk aversion.

Example 1 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

2For every (u1, v2) and every (u2, v2), (u1, v1) ▶ (u2, v2) and (u2, v2) ▶ (u1, v1) if and only if e(·, ψ1)
and e(·, ψ1) take the same constant value. Thus, the symmetric part of ▶ corresponds to the pair (ψ1, ψ2)
of identical transformations that have a constant elasticity.
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u2 : I2 → R, and v2 : I2 → R have constant coefficients γ1, η1, γ2, and η2 of absolute risk

aversion (1). Then

ψn(y) = yηn/γn (9)

for every n = 1, 2 and every y ∈ R++. Hence,

e(·, ψn) = η1/γn (10)

for every n = 1, 2. Thus, (u1, v1) ▶ (u2, v2) if and only if η1/γ1 ≥ η2/γ2, and (u1, v1) ▷
(u2, v2) if and only if η1/γ1 > η2/γ2.

The next one deals with constant relative risk aversion.

Example 2 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R have constant coefficients γ1, η1, γ2, and η2 of relative

risk aversion (2). Then, (9) and (10) hold. Thus, (u1, v1) ▶ (u2, v2) if and only if

η1/γ1 ≥ η2/γ2, and(u1, v1) ▷ (u2, v2) if and only if η1/γ1 > η2/γ2.

Example 2 looks much the same as Example 1, but it illuminates what can be brought

about by our use of the function ψn that transforms u′n to v′n, rather than the function

φn that transforms un to vn (n = 1, 2). Indeed, if we used the latter, the domain of φn

coincides with Ranun, which may be either R++ or −R++, depending on whether γn is

smaller or greater than one. For example, if γ1 < 1 < γ2, then the domain of φ1 coincides

with R++, while the domain of φ2 coincides with −R++. Hence, it does not make sense

to say that one of them is more concave than the other, and we cannot conclude that v1

is more risk averse than u1 to a greater extent than v2 is more risk averse than u2 or the

other way around.

Example 3 Suppose that two expected utility functions u1 : I1 → R and v1 : I1 → R

have constant coefficients γ1 and η1 of absolute risk aversion (1), and two expected utility

functions u2 : I2 → R and v2 : I2 → R have constant coefficients γ2 and η2 of relative risk

aversion (2). Then (9) and (10) hold. Thus, (u1, v1) ▶ (u2, v2) if and only if η1/γ1 ≥ η2/γ2,

and(u1, v1) ▷ (u2, v2) if and only if η1/γ1 > η2/γ2.

This example is an immediate consequence of the first two, but it would have been

impossible to compare a pair of expected utility functions of constant absolute risk aver-

sion and a pair of expected utility functions of constant relative risk aversion, if we had

stuck to the comparison by means of the function φn that transforms un to vn. Since

I1 = R and I2 ∈ R++ or I2 = −R++, I1 ̸= I2. Thus, the example also shows that the

comparison of the more-risk-averse than relation is possible even when the domains are

different.

The following example is a generalization of the previous one, in that the expected

utility functions have decreasing hyperbolic absolute risk aversion.
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Example 4 For each n = 1, 2, let bn ∈ R and the four expected utility functions u1 :

(b1,∞) → R, v1 : (b1,∞) → R, u2 : (b2,∞) → R, and v2 : (b2,∞) → R have hyperbolic

absolute risk aversion with the cautiousness parameters γn and ηn:
3

a(xn, un) =
1

γn(xn − bn)
,

a(xn, vn) =
1

ηn(xn − bn)
,

Then,
a(xn, vn)

a(xn, un)
=
γn
ηn

for every xn ∈ (bn,∞). Thus, (u1, v1) ▶ (u2, v2) if and only if η1/γ1 ≤ η2/γ2, and

(u1, v1) ▷ (u2, v2) if and only if η1/γ1 < η2/γ2. That is, the even-more-risk-averse-than

relation can be characterized as a larger proportional decrease in the cautiousness.

In the following example the expected utility functions have increasing, rather than

decreasing, hyperbolic absolute risk aversion. It covers the case of quadratic expected

utility functions.

Example 5 For each n = 1, 2, let bn ∈ R and the four expected utility functions u1 :

(−∞, b1) → R, v1 : (−∞, b1) → R, u2 : (−∞, b2) → R, and v2 : (−∞, b2) → R have

hyperbolic absolute risk aversion with the cautiousness parameters γn and ηn:

a(xn, un) =
1

γn(bn − xn)
,

a(xn, vn) =
1

ηn(bn − xn)
,

Then,
a(xn, vn)

a(xn, un)
=
γn
ηn

for every xn ∈ (−∞, bn). Thus, (u1, v1) ▶ (u2, v2) if and only if η1/γ1 ≤ η2/γ2, and

(u1, v1) ▷ (u2, v2) if and only if η1/γ1 < η2/γ2. That is, the even-more-risk-averse-than

relation can be characterized as a larger proportional decrease in the absolute values of

the cautiousness.

The above five examples all involve pairs of expected utility functions for which the

ratio of the coefficients of absolute risk aversion, (2), is constant. Thus, every pair in

these examples can be compared with every other pair in the examples with respect to

▶.

3The cautiousness is defined as the derivative of the reciprocal of the coefficients of absolute risk
aversion. This terminology is due to Wilson (1968).
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The following example is due to Collard, Mukerji, Sheppard, and Tallon (2018). It

is different from the previous ones in that there may be no ranking with respect to the

even-more-risk-averse-than relation.

Example 6 Suppose that two expected utility functions u1 : I1 → R and u2 : I2 → R

have constant coefficients γ1 and γ2 of relative risk aversion (2). For each n = 1, 2, let

αn > 0 and assume that φn has the same functional form as the expected utility function

of constant absolute risk aversion (1), with the parameter γ replaced by αn. Define

vn = φn ◦ un. Then

vn(x) = − 1

αn

exp

(
− αn

1− γn
x1−γn

)
,

v′n(x) = x−γn exp

(
− αn

1− γn
x1−γn

)
, (11)

and the basic conditions are met. Define ψn = v′n ◦ (u′n)−1, then

ψn(yn) =
(
y−1/γn
n

)−γn
exp

(
− αn

1− γn

(
y−1/γn
n

)1−γn

)
= yn exp

(
− αn

1− γn
y1−1/γn
n

)
ψ′
n(yn) = exp

(
− αn

1− γn
y1−1/γn
n

)
+ yn exp

(
− αn

1− γn
y1−1/γn
n

)(
− αn

1− γn

(
1− 1

γn

)
y−1/γn
n

)
=

(
1 +

αn

γn
y1−1/γn
n

)
exp

(
− αn

1− γn
y1−1/γn
n

)
.

Thus,

e(yn, ψn) =
ψ′
n(yn)yn
ψn(yn)

= 1 +
αn

γn
y1−1/γn
n .

Thus, (u1, v1) ▶ (u2, v2) if and only if if and only if

1 +
α1

γ1
y
1−1/γ1
1 ≥ 1 +

α2

γ2
y
1−1/γ2
2 ,

which is equivalent to
α1γ2
α2γ1

≥ y
1/γ1−1
1 y

1−1/γ2
2 (12)

for every y1 and every y2. If γ1 = γ2 = 1, then the right-hand side is equal to one and

the inequality holds if and only if α1 ≥ α2.
4 Otherwise, the right-hand side can take any

value in R++ as we vary y1 or y2. Thus, there is no value of the αn’s and the γn’s such

that (u1, v1) ▶ (u2, v2).

In this example, since I1 = I2 = R++, we can take yn = u′n(x) for each n with a

4In this case, un has constant coefficient 1 of relative risk aversion and vn has a constant coefficient
1 + αn of relative risk aversion. This will be shown by (13). In this case, (u1, v1) and (u2, v2) can be
compared by the more-ambiguity-averse-than relation of KMM.
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common consumption level x ∈ R++ in the above example. Then (12) can be reduced to

α1γ2
α2γ1

≥ xγ1−γ2 ,

which holds for every x if and only if γ1 = γ2 and α1 ≥ α2. That is, (8) holds whenever

x1 = x2 if and only if γ1 = γ2 and α1 ≥ α2. This highlights a difference between our

definition of the even-more-risk-averse-than relation and the ambiguity measure of KMM,

to be defined in Section 6. In our definition, we require (8) to hold for all choices of y1

and y2, while the ambiguity measure of KMM is equivalent to requiring it to hold only

when I1 = I2 and there is an x such that u′n(x) = yn for each n. To compare two

marginal utilities at a common consumption level, it is, of course, necessary that I1 = I2,

but our definition of the even-more-risk-averse-than relation is applicable even when this

condition is not met.

In this example, vn has decreasing or increasing relative risk aversion, depending on

whether γn is greater or smaller than one. Indeed, by (11),

r(x, vn) = γn + αnx
1−γn . (13)

Thus, if γn > 1, then r(·, vn) is strictly decreasing, while if γn < 1, then it is strictly

increasing. This is a rather unexpected consequence of introducing ambiguity aversion

by way of φn of the form (1). On the one hand, the decision maker’s constant coefficient

of relative risk aversion over purely risky consumption plans can be measured, say, by the

fraction of the total wealth he invests into the asset with purely risky returns. On the

other hand, whether he exhibits increase or decreasing relative risk aversion over purely

ambiguous consumption plans (second-order acts, according to the terminology of KMM)

can be determined, say, by whether he would increase the fraction of the total wealth

he invests into the assets with purely ambiguous returns as the total wealth increases.

These two attitudes towards risk and ambiguity should better be disentangled in models

of any quantitative analysis, but, in this specification, a restriction on one automatically

implies a restriction on the other.

The use of functions (1) of constant absolute risk aversion as the function φn that

transforms un to vn was also suggested by Ju and Miao (2012, pages 566–567). The

justification for this is that if we take φn to be a function (2) of constant relative risk

aversion, then vn = φn ◦ un is not well defined when un has constant coefficient γn of

relative risk aversion greater than one (because, then, Ranun = −R++). This problem

can be circumvented if we specify the function ψn that transforms u′n to v′n to be any

plausible form, such as (9), because Ranu′n = R++ regardless of the values of γn.
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5 Behavioral conditions

In this section, we obtain an equivalent behavioral condition of the even-more-risk-averse-

than relation. We start with some definitions. For each x ∈ R and δ ∈ R++, denote by

F (x, δ) the set of all cumulative distribution functions of which the mean is equal to x,

the variance is strictly positive, and the support is included in [x− δ, x+ δ].

Definition 2 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R satisfy the basic conditions. We say that v1 is more risk

averse than u1 in choice at least to the same extent as v2 is more risk averse than u2, if

for each n and for every xn ∈ In, there are a δn > 0 and a τn > 0 such that τ1 ≥ τ2 and,

for every Fn ∈ F (xn, δn),

u1(x1 − q1) ≤
∫
u1(z1) dF1(z1),

v1(x1 − τ1q1) ≥
∫
v1(z1) dF1(z1),

u2(x2 − q2) ≥
∫
u2(z2) dF2(z2),

v2(x2 − τ2q2) ≤
∫
v2(z2) dF2(z2).

We then write (u1, v1)▶̊(u2, v2). If, in addition, τ1 > τ2, then we say that v1 is more risk

averse than u1 in choice to a greater extent than v2 is more risk averse than u2 and write

(u1, v1)▷̊(u2, v2).

The first inequality in the definition of ▶̊ tells us that the certainty premium under

u1 is smaller than or equal to q1, while the second inequality tells us that the certainty

premium under v1 is greater than or equal to τ1q1. Hence, the proportional change in the

certainty premium induced by the change from u1 to v1 is greater than or equal to τ1.

The third inequality tells us that the certainty premium under u2 is greater than or equal

to q2, while the fourth inequality tells us that the certainty premium under v2 is smaller

than or equal to τ2q2. Hence, the proportional change in the certainty premium induced

by the change from u2 to v2 is smaller than or equal to τ2. Thus, the proportional change

in certainty premium is greater or equal when changing from u1 to v1 than when changing

from u2 to v2. The definition of ▶̊ requires that this be true for every small risk, regardless

of the consumption levels at which the certainty premiums are measured. The inequalities

in the definition of ▷̊ are different from those in the definition of ▶̊ only in that the weak

inequality τ1 ≥ τ2 is replaced by the strict inequality. By taking τ1 smaller, τ2 larger, q1

larger, and q2 smaller if necessary, we can define the relation ▷̊ equivalently by replacing,

in Definition 2, the four weak inequalities on expected utility levels by the corresponding

strict inequalities. Whenever necessary, we shall refer to both the binary relations ▷̊ and
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▶̊ indistinguishably as the behavioral even-more-risk-averse-than relation.

The following theorem establishes the relationship among the four binary relations ▶,

▷, ▶̊, and ▷̊.

Theorem 1 ▷= ▷̊ ⊆ ▶̊ ⊆▶.

This theorem means that for four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R satisfying the basic conditions, (u1, v1) ▷ (u2, v2) if and only

if (u1, v1)▷̊(u2, v2); if (u1, v1)▷̊(u2, v2), then (u1, v1)▶̊(u2, v2); and if (u1, v1)▶̊(u2, v2), then

(u1, v1) ▶ (u2, v2). It shows that the even-more-risk-averse-than relation is concerned with

the proportional change in the certainty premiums (the difference between the mean of

the random prospect and its certainty equivalent) caused by a change in expected utility

functions.

We can conclude, roughly, that the even-more-risk-averse-than relation can be de-

tected by a reversal of choices between the deterministic and random consumption plans

by some common proportional change in the certainty premiums. This latter condition

makes sense for preference relations over cumulative distributions functions that may

not be represented by expected utility functions. In fact, let ≿1
1 and ≿2

1 be preference

relations defined on a set of cumulative distribution functions on I1, and ≿1
2 and ≿2

2 be

preference relations defined on a set of cumulative distribution functions on I2. We can

then rewrite the inequalities in the definition of ▷̊ as

F1 ≿1
1 1[x1−q1,∞),

1[x1−τ1q1,∞) ≿2
1 F1,

1[x2−q2,∞) ≿1
2 F2,

F2 ≿2
2 1[x2−τ2q2,∞),

where, for every x, 1[x,∞) denotes the (degenerate) cumulative distribution function that

is equal to one on [x,∞) and zero on (−∞, x). The inequalities in the definition of ▶̊
can be obtained by replacing the ≻i

n by the ≿i
n. These conditions can be used to as the

definition of the statement that ≿2
1 is more risk-averse than ≿1

1 to a greater extent than

(or at least to the same extent as) ≿2
2 is more risk-averse than ≿1

2, even for preference

relations that cannot be represented by expected utility functions.

6 Application to the utility functions of KMM

As we stated in the introduction, this study is motivated by the smooth ambiguity

model of KMM. In this section, we show how our definition can be used to compare

two ambiguity-averse utility functions in the model.

12



6.1 Setup

Let S be the state space, which represents the uncertainty that the decision maker is

faced with. Denote by D the set of all probability measures S. Denote by C the set of

all functions of S into I.5 Suppose that two expected utility functions u : I → R and

v : I → R satisfy the basic conditions. Let µ be a probability measure on D. Define a

utility function W : C → R by letting

W (c) =

∫
D

v

(
u−1

(∫
S

u(c(s)) dπ(s)

))
dµ(π) (14)

for every c ∈ C. This nested expected utility function is the functional form that KMM

axiomatized. Write φ = v ◦ u−1, then

W (c) =

∫
D

φ

(∫
S

u(c(s)) dπ(s)

)
dµ(π). (15)

This shows that the decision maker is averse to the uncertainty that he perceives in the

expected utilities calculated by various probability measures π ∈ D if and only if φ is

concave, that is, v is more risk-averse than u. The probability measure µ represents his

subjective assessment of this uncertainty, which KMM termed as the second-order belief.

We see in (14) that if
∫
S
u(c(s)) dπ(s) is independent of π, then, writing x =

u−1
(∫

S
u(c(s)) dπ(s)

)
∈ I, we obtain W (c) = u(x). This means that if the conditional

certainty equivalent of c given a probability measure π ∈ supp µ is, in fact, independent

of π, then the utility function W is determined by the inner utility function u (as it

determines the conditional certainty equivalents), and the outer expected utility function

v is irrelevant as it only monotonically transforms the certainty equivalents. Thus, u

can be interpreted as representing the attitudes towards pure risk. On the other hand,

suppose that c is constant almost surely with respect to every π ∈ supp µ, but the con-

stant that c takes almost surely depends on π, then denote the value by c(π). Then,

W (c) =
∫
D
v(c(π)) dµ(π). This means that W (c) is determined only by the outer utility

function v, and the inner utility u is irrelevant as we take the certainty equivalents in the

calculation for W (c). Thus, v can be interpreted as representing the attitudes towards

the uncertainty that the decision maker perceives in the expected utility levels.

To give a new definition of the more-ambiguity-averse-than relation for the utility

functions of KMM and compare it with the definition KMM gave (Definition 5), we

impose the same restrictions on the state space as they did. Let S = Ω × [0, 1], where

Ω is a measurable space and [0, 1] is the closed unit interval endowed with the Lebesgue

measure λ. It is interpreted as an objective probability, and, as such, all the probabilities

that the decision maker may conceive of on the state space S have the common marginal

5To make sure the utility function is indeed well defined, we need to impose some additional conditions
on S and C. To simplify the exposition, we omit them.
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distribution λ on [0, 1].6 We assume that S contains at least two elements. By an abuse

of notation, we also denote a probability distribution on Ω by π, the set of all probability

measures on Ω by D, the second-order belief on D by µ. By Fubini’s theorem, we can

then rewrite (14) as

W (c) =

∫
D

v

(
u−1

(∫
Ω×[0,1]

u(c(ω, ξ)) d(π ⊗ λ)(ω, ξ)

))
dµ(π) (16)

=

∫
D

v

(
u−1

(∫
Ω

(∫
[0,1]

u(c(ω, ξ)) dλ(ξ)

)
dπ(ω)

))
dµ(π).

6.2 An alternative definition of the more-ambiguity-averse-than

relation

Let W1 and W2 be two KMM utility functions defined on the same state space S =

Ω× [0, 1] and determined by two triples (u1, v1, µ1) and (u2, v2, µ2) via (16). Denote by In

the common domain of un and vn. Denote by Cn the set of all cn : S → In. The following

is a simplified version of the more-ambiguity-averse-than relation of KMM.

Definition 3 (KMM) Assume that I1 = I2 and µ1 = µ2. Write C for Cn. We say that

W1 is at least as ambiguity-averse as W2 if, for every c ∈ C and every d ∈ C, W2(c) ≥
W2(d) whenever d(ω, ξ) is independent of ω ∈ Ω for every ξ ∈ [0, 1] and W1(c) ≥ W1(d).

In the first part of this definition, we assume that the two utility functions share the

same domain of consumption levels and the same second-order belief. The assumption of

common domain is needed as this definition is concerned with the rankings byW1 andW2

over common consumption plans c and d. The assumption of the common second-order

belief is imposed to exclude the possibility that the difference in ambiguity attitudes arises

from a difference in second-order beliefs. The integral part of their definition is in the

second part of this definition. It requires that for two consumption plans c and d, if d is

unambiguous and it is at most as desirable as another, possibly ambiguous, consumption

plan c for W1, then d should also be at most as desirable as c for W2. This definition

formalizes the idea, putting the discrepancy between weak and strict preferences aside,

that if the unambiguous consumption plan is inferior for the more ambiguity-averse utility

function W1, it should also be so for the less ambiguity-averse utility function W2.

The original definition by KMM is, in fact, more intricate than Definition 3. They gave

the more-ambiguity-averse-than relation over the family of pairs of preference relation on

the set C and preference relations on the set of fictitious consumption plans (termed

by KMM as second-order acts) contingent on probability measures π on Ω,7 where the

6We have taken [0, 1] and the Lebesgue measure λ as the objective probability measure to guarantee
that any distribution of consumption levels can be represented as a random variable on [0, 1].

7In fact, KMM axiomatized the functional form (14) in terms of a pair of a preference relation on C
and a preference relation on the set of second-order acts, rather than just in terms of a preference relation
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family is constructed by indexing the pairs by the supports of second-order beliefs in

D; and they defined one pair as being more ambiguity-averse than another if the same

rankings between an unambiguous consumption plan d and a possibly ambiguous plan c

holds as in Definition 3 for all supports of second-order beliefs. In contrast, Definition

3 does not involve any preference relation on the set of second-order acts, and deals

with a single preference relation rather than a family of preference relations. KMM’s

fully-fledged definition is important, especially when we interpret numerical results on

KMM utility functions, because it makes explicit the otherwise implicit assumption that

a decision maker’s attitudes towards risk (represented by the inner utility function u)

and ambiguity (represented by the outer utility function v) should travel with him across

different settings (represented by the supports of second-order beliefs).8 Yet, in the

subsequent analysis, we use Definition 3 because this simplified version is sufficient to

illustrate the difference in the definition of a more-ambiguity-averse-than relation between

KMM and this paper.

Theorem 2 of KMM shows that for W1 and W2 defined through (16) with I1 = I2

and µ1 = µ2, W1 is at least as ambiguity averse as W2 if and only if u1 is an affine

transformation of u2 and v1 is a concave transformation of v2. The affinity between u1

and u2 follows from the fact that in Definition 3 (a simplified version of the definition

of KMM), the consumption plan c may be unambiguous as well. In fact, by restricting

the definition to the case where both d and c are unambiguous, we can see that W1 and

W2 must agree on the ranking between unambiguous consumption plans whenever one is

more ambiguity-averse than the other in the sense of Definition 3. This is equivalent to

saying that u1 is an affine transformation of u2.

This consequence of the more-ambiguity-averse-than relation is somewhat unfortu-

nate, because it significantly limits the scope within which we can compare various

quantitative results on ambiguity attitudes in the literature. To see this point, imag-

ine that given a set of data on portfolio choices, we have estimated ambiguity-averse

utility functions W1 and W2 for two groups of investors that are formed on the basis of

some observable characteristics, such as age, gender, and occupation. We would then like

to know to what extent the difference in ambiguity attitudes can account for the differ-

ence in portfolio choices between the two groups. The natural course of action would be

to compare the estimated φ1 and φ2. However, Definition 3 provides no sound theoretical

foundation for such a comparison unless the estimates of u1 and u2 are the same.

Our definition of a more-ambiguity-averse-than relation does not suffer from this defi-

ciency. Unlike Definition 3, our definition neither assume that µ1 = µ2 nor imply that u1

on C. Seo (2009) axiomatized the functional form that extends (14) by dispensing with the preference
relation on the set of second-order acts and introducing three-stage, rather than two-stage, lotteries.

8Assumption 4 of KMM requires these attitudes to be separable from the settings. But whether such
a separation is possible is a contentious issue, as can be seen in the discussions of Epstein (2010) and
Klibanoff, Marinacci, and Mukerji (2012).
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is an affine transformation of u2. Denote by ι the function defined on S that constantly

takes value one. Our definition can then be stated as follows.

Definition 4 We say that W1 is at least as ambiguity-averse as W2 if for each n and for

every xn ∈ In, there are a δn > 0 and a τn > 0 such that τ1 ≥ τ2 and, for every cn ∈ Cn

and every dn ∈ Cn, if they satisfy the first two of the following three conditions, then

they satisfy satisfy the last one.

1. dn(ω, ξ) is independent of ω ∈ Ω for every ξ ∈ [0, 1]. We thus write it as dn(ξ) and

regard as dn : [0, 1] → In;

2. Define en : D → In by letting

en(π) = u−1
n

(∫
Ω

un(cn(ω, ξ)) d(π ⊗ λ)(ω, ξ)

)
(17)

for every π ∈ D. Then the distribution of en, µn◦e−1
n , coincides with the distribution

of dn, λ ◦ d−1
n . Moreover, their mean is equal to xn and their support is included in

[xn − δn, xn + δn].

3. For each n, there is a qn > 0 that

W1((x1 − q1)ι) ≤ W1(d1),

W1((x1 − τ1q1)ι) ≥ W1(c1),

W2((x2 − q2)ι) ≥ W2(d2),

W2((x2 − τ2q2)ι) ≤ W2(c2).

We then write W1▶̂W2. If, in addition, τ1 > τ2, then we say that W1 is more ambiguity-

averse than W2, and write W1▷̂W2.

Just as in the case of the behavioral even-more-risk-averse-than relation, taking τ1

smaller, τ2 larger, q1 larger, and q2 smaller if necessary, we can define the relation ▷̂
equivalently by replacing, in Definition 4, the four weak inequalities by the corresponding

strict inequalities.

This definition compares the preference between a deterministic consumption plan

(xn − qn)ι and an unambiguous consumption plan dn, with the preference between a

deterministic consumption plan (xn− τnqn)ι and a possibly ambiguous consumption plan

cn. To be more precise, by (16) and the change-of-variable formula,

Wn(dn) = vn

(
u−1
n

(∫
[0,1]

un(dn(ξ)) dλ(ξ)

))
= vn

(
u−1
n

(∫
In

un(x) d(λ ◦ d−1
n )(x)

))
.
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Thus, the ranking between dn and (xn − qn)ι can be reduced to the ranking between the

distribution λ◦d−1
n and the deterministic consumption level xn−qn by the inner expected

utility function un. By (17) and the change-of-variable formula,

Wn(cn) =

∫
D

vn (en(π)) dµn(π) =

∫
In

vn(x) d(µn ◦ e−1
n )(x).

Thus, the ranking between cn and (xn − τnqn)ι can be reduced to the ranking between

the distribution µn ◦ e−1
n and the deterministic consumption level xn − τnqn by the outer

expected utility function vn. Since λ ◦ d−1
n = µn ◦ e−1

n , the two rankings differ only in

the expected utility function with respect to which the two (random and deterministic)

consumption plans are ranked. Following the terminology of KMM, we shall refer to en

as the second-order consumption plan associated with cn.

This sort of comparison between two rankings was envisaged by Definition 2, but

the comparison in Definition 4 is different from it in an important respect: While the

alternatives, xn−qn, xn−τnqn, and Fn, in Definition 2 can be set up without knowing the

utility functions (un and vn), to set up the alternatives, cn, dn, xn − qn, and xn − τnqn, in

Definition 4, we need to know the inner utility function un and the second-order belief µn

because cn and dn must satisfy λ ◦ d−1
n = µn ◦ e−1

n , where the second-order consumption

plan en associated with cn in (17) depends on the inner utility function un. In this

sense, the more-ambiguity-averse-than relation of Definition 4 can more easily be checked

when the attitudes towards risk (represented by the inner utility function un) and the

second-order beliefs µn are already known.9

The next two theorems show how our more-ambiguity-averse-than relation is related

to the even-more-risk-averse-than relation. They give an easy way to check whether a

KMM utility function is more ambiguity-averse than another.

Theorem 2 Define two utility function W1 : C1 → R and W2 : C2 → R on the same

state space S = Ω × [0, 1], with [0, 1] endowed with the Lebesgue measure, by two triples

(u1, v1, µ1) and (u2, v2, µ2) via (16). Then

1. If (u1, v1)▷̊(u2, v2), then W1▷̂W2.

2. If (u1, v1)▶̊(u2, v2), then W1▶̂W2.
9Thus, if we were to conduct experiments to infer and compare two KMM utility functions W1 and

W2, we should do so in two stages under the assumption that we know that the two second-order beliefs
µ1 and µ2 are the same and, in addition, what the common second-order belief is. In the first stage
of experiments, we only use unambiguous consumption plans to infer the inner utility functions un. In
the second stage, based on the inner utility function un inferred in the first stage and the common
second-order belief posited at the beginning, we set up cn and dn to satisfy condition 2 of Definition 4,
and choose xn, qn, and τn see if it is possible to generate a preference reversals between the two utility
functions W1 and W2 when cn and dn are compared to xn − τnqn and xn − qn. The assumption that
the two second-order beliefs are known and identical would be unnecessary if it were possible to set up
second-order consumption plans in experiments to infer µn and vn. KMM argued that it may well be
possible to do so to justify their Assumption 2, which is one of the axioms for the functional form (14).
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This theorem shows, roughly, that the behavioral even-more-risk-averse-than relation

implies the more-ambiguity-averse-than relation.

The second theorem is an almost converse of the first. To see why the exact converse

cannot be obtained, consider the case where the second-order belief µn is degenerate, that

is, concentrated on a single probability measure on Ω. Then, for every (cn, dn) satisfying

the conditions of Definition 4, the distributions µn ◦e−1
n and λ◦d−1

n are concentrated on a

single consumption level and, thus, the inequalities in Condition 3 of Definition 4 cannot

have any implication on the utility functions un and vn. We thus assume that for both

n, µn is non-degenerate.

Theorem 3 Define two utility function W1 : C1 → R and W2 : C2 → R on the same

state space S = Ω × [0, 1], with [0, 1] endowed with the Lebesgue measure, by two triples

(u1, v1, µ1) and (u2, v2, µ2) via (16). Suppose that µ1 and µ2 are non-degenerate. Then

1. If W1▷̂W2, then (u1, v1) ▷ (u2, v2).

2. If W1▶̂W2, then (u1, v1) ▶ (u2, v2).

Since ▷= ▷̊, Part 1 of this theorem, along with Part 1 of Theorem 2, implies that

▷, ▷̊, and ▷̂ are equivalent. Since ▶̊ ⊆▶, Part 2 of this theorem, along with Part 1 of

Theorem 2, implies that ▶̂ lies, in the order of strength, between ▶̊ and ▶.

6.3 Relevance of the alternative definition to the literature

The ambiguity aversion coefficients in the smooth model were inferred or estimated from

experimental evidence or asset market data, borrowed from earlier works, or quoted

as a consensus in the profession, by Halevy (2007), Ju and Miao (2011), Chen, Ju,

and Miao (2014), Jahan-Parvar and Liu (2014), Thimme and Vöckert (2015), Gallant,

Jahan-Parvar, and Liu (forthcoming), Altug, Collard, Çakmakli, Mukerji, and Özsöylev

(2018), and Hara and Honda (2018). These studies used or obtained different (constant)

coefficients of ambiguity aversion, which corresponds to ηn/γn in Examples 1, 2, and 3.

It is impossible to conclude that the decision maker with a higher estimated coefficient

of ambiguity aversion is more ambiguity-averse in the sense of KMM (Definition 3 of this

paper), because these studies involve different risk aversion coefficients (which correspond

to γn in Examples 1, 2, and 3).

To see how our more-ambiguity-averse-than relation can be fit in these studies, let’s

take up Chen, Ju, and Miao (2014), who studied the optimal portfolio choice problem

of an investor who has a utility function of Hayashi and Miao (2011), which not only

extends utility functions of KMM to a dynamic setting but also generalizes recursive

utility functions of Epstein and Zin (1989), thereby allowing for the three-way separation

between risk aversion, ambiguity aversion, and intertemporal elasticity of substitution.
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Tables 1 and 3 of their paper list up various configurations of the coefficients of relative

risk aversion of the inner expected utility function un, which is denoted by γn in Example

2, and the coefficients of relative risk aversion of the outer expected utility function vn,

which is denoted by η in Example 2. In Table 1, for each pair (γ, η) ∈ {0.5, 2, 5, 10, 15}×
{40, 50, 60, 70, 80, 90, 100, 110}, they presented the ambiguity premium, defined as the

difference between the certainty equivalents of a purely risky act and a purely ambiguous

(second-order) act. When γ is fixed, say, at 2, increasing η from 50 to 100 leads to

a more ambiguity-averse investor in the sense of KMM. But, the investor is not more

ambiguity-averse when (γ, η) = (2, 40) than when (γ, η) = (5, 90) or the other way around,

because the coefficients γ of relative risk aversion are different between the two pairs.

Yet, according to our definition, the investor is deemed as more ambiguity-averse when

(γ, η) = (2, 40) than when (γ, η) = (5, 90), because 40/2 = 20 > 18 = 90/5. Nonetheless,

the ambiguity premium is lower when (γ, η) = (2, 40) than when (γ, η) = (5, 90). This

is due to the difference in the way the premiums are defined. In this paper, the even-

more-risk-averse-than relation is defined according to the ratio of the certainty premiums

(the differences between the expected reward and the certainty equivalents of a lottery)

with respect to γ and with respect to η, while their “ambiguity premium” is equal to the

difference between the certainty two premiums. The latter is more pronounced when the

coefficient γ of relative risk aversion is larger.

In Table 3, Chen, Ju, and Miao (2014) presented the optimal fraction of investment

into the stock (the other asset being riskless in their model). The pairs (γ, η) that they

used are

(2, 2), (2, 60), (2, 80), (2, 100),

(5, 5), (5, 60), (5, 80), (5, 100),

(10, 10), (10, 60), (10, 80), (10, 100).

They observed that for a fixed γ, increasing η leads to a lower fraction of investment

into the stock. The definition of KMM covers this case, but does not tell us whether

the investor is more ambiguity-averse when (γ, η) = (5, 60) than when (γ, η) = (10, 100).

According to our more-ambiguity-averse-than relation, the investor is deemed as more

ambiguity-averse when (γ, η) = (5, 60) than when (γ, η) = (10, 100), because 60/5 =

12 > 10 = 100/10. They found that the optimal fraction of investment in the stock is

higher when (γ, η) = (5, 60) than when (γ, η) = (10, 100). This is consistent with their

observation that the coefficient γ of relative risk aversion for the inner expected utility

function u has larger effects on the optimal fraction of investment into the stock than the

coefficient η of relative risk aversion for the inner expected utility function v.

Another instance in which the scope of comparison of ambiguity aversion is enhanced

by our definition of ambiguity aversion is Hara and Honda (2018) versus the other contri-
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butions mentioned at the beginning of this subsection. Hara and Honda (2018) assumed

constant absolute risk aversion as in Example 1, and the others assumed constant relative

risk aversion as in Example 2. The two are not comparable according the more-ambiguity-

averse-than relation of KMM. Moreover, the concavity of the functions φn that transform

un to vn are not comparable, because the domain of φn is R in the case of constant abso-

lute risk aversion, while it is R++ or −R++ in the case of constant relative risk aversion.

Yet, as mentioned right after Example 3, our definition of the more-ambiguity-averse-

than relation allows us to compare the ambiguity aversion between the two cases on

sound economic ground.

Hara and Honda (2018) found that for the representative consumer, who holds the

stock market index (a proxy of the market portfolio), ηn/γn must be at least 9.25 and may

well be higher. This figure is much higher than the figures obtained in many other works

for the representative consumer. For example, Ju and Miao’s (2012) calibration shows

that ηn/γn is around 4.43. It is worthwhile to attempt to explain where the difference is

from, but without our definition of the more-ambiguity-averse-than relation, this question

would have been ill-posed.10

7 Conclusion

Given two pairs of expected utility functions, we have formalized the statement that one

expected utility function is more risk-averse than the other in the first pair to a greater

extent than in the second pair. To do so, we used the elasticity of the function that

transforms the derivatives of one expected utility function to the derivatives of the other.

As was seen in (5), (6), and (8), when we compared the elasticities of ψ1 and ψ2, we

require the elasticity of ψ1 is higher than the elasticity of ψ2, regardless of the choices of

the marginal utilities, y1 and y2, of the expected utility functions u1 and u2. This makes

our definition of the even-more-risk-averse-than relation rather stringent, and two pairs

of expected utility function may not be comparable according to the relation. One might

be led to think that it would be more practical to define the even-more-risk-averse-than

relation by choosing the marginal utilities, y1 and y2, to be equal. There are two reasons

why this attempt is unlikely to be successful. First, since the level of marginal utilities

may be changed by a scalar multiplication to an expected utility function (which does

not change the risk attitudes it represents), choosing the same level of marginal utilities

for two expected utility functions has, in general, no economic meaning. Second, as we

did in our explanation after Example 6, it might make sense to take y1 and y2 to be the

10It is tempting to speculate that the difference arises from the difference in settings, because Hara
and Honda (2018) considered a static model with multiple risky assets, while the others considered a
dynamic model with a single risky asset. But such a speculation may not be consistent with the basic
tenet of KMM utility functions, explained in Footnote 8 as well, whereby the second-order belief may
depend on settings but the ambiguity aversion must not.
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marginal utilities at a common consumption level. This is possible, however, only if the

expected utility functions of the two pairs have the same domain. This would restrict the

applicability of our definition, as it would exclude cases such as Example 3. Yet, when

the domains are the same, it might be possible to give a less stringent, more practical

definition of the even-more-risk-averse-than relation. Exploring the implication of this

alteration can be a direction of future research.

The most important direction of future research is to extend the more-ambiguity-

averse-than relation (Definition 4) to other types of ambiguity-averse utility functions. As

explained in Footnote 8 of KMM, two utility functions that are comparable with respect to

the more-ambiguity-averse-than relations employed for other classes of ambiguity-averse

utility functions, such as α-MEU functions, must also exhibit the same preference over

purely risky consumption plans. This property, again, significantly narrows down the

scope of comparison of ambiguity attitudes. Finding a general definition of the more-

ambiguity-averse-than relation that covers these classes is imperative to increase the

usefulness of ambiguity-averse utility functions in numerical and empirical analysis.

A Lemmas and Proofs

Proof of Proposition 2 By differentiating both sides of v′(x) = ψ(u′(x)) with respect

to x, we obtain v′′(x) = ψ′(u′(x))u′′(x). By dividing both sides of this equality by both

sides of the previous one, we obtain

a(x, v) = −ψ
′(u′(x))

ψ(u′(x))
u′′(x).

By substituting u′′(x) by −u′(x)a(x, u), we obtain (3) . ///

For every cumulative distribution function on R, denote its mean by E(F ) and vari-

ance by V (F ), whenever they exist. Recall that for every x ∈ R and δ ∈ R++, F (x, δ)

is the set of all cumulative distribution functions F such that E(F ) = x, V (F ) > 0, and

the support of F is included in [x− δ, x+ δ].

In the subsequent analysis, we often assume, without explicitly stating so, that F is

concentrated on the set I of consumption levels for a decision maker. For each expected

utility function u : I → R that satisfies the basic conditions, each x ∈ I, and each

cumulative distribution function F with mean x, define p(x, F, u) by

u(x− p(x, F, u)) =

∫
R

u(z) dF (z). (18)

Then p(x, F, u) is the certainty premium of the distribution F of random consumption

levels.
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Lemma 1 Let u : I → R and v : I → R be two expected utility functions satisfying the

basic conditions. For every x ∈ I and every ε > 0, there is a δ > 0 such that for every

F ∈ F (x, δ), ∣∣∣∣p(x, F, v)p(x, F, u)
− a(x, v)

a(x, u)

∣∣∣∣ < ε.

The following proof is essentially due to Pratt (1964).

Proof of Lemma 1 Let x ∈ I and, for a moment, let δ > 0 satisfy [x − δ, x + δ] ⊂ I

and F ∈ F (x, δ). We shall later take a smaller δ when necessary. For each z satisfying

z ∈ I, write

R2(z, x, u) = u(z)− (u(x) + u′(x)(z − x)) ,

R3(z, x, u) = u(z)−
(
u(x) + u′(x)(z − x) +

u′′(x)

2
(z − x)2

)
.

Then

u(x− p(x, F, u)) = u(x)− u′(x)p(x, F, u) +R2(x− p(x, F, u), x, u),∫
R

u(z) dF (z) = u(x) +
u′′(x)

2
V (F ) +

∫
R3(z, x, u) dF (z).

By (18),

−u′(x)p(x, F, u) +R2(x− p(x, F, u), x, u) =
u′′(x)

2
V (F ) +

∫
R3(z, x, u) dF (z).

By dividing both sides by −u′(x) and rearranging the terms, we obtain

p(x, F, u)− 1

2
a(x, u)V (F ) =

1

u′(x)

(
R2(x− p(x, F, u), x, u)−

∫
R3(z, x, u) dF (z)

)
.

Since u is thrice continuously differentiable, for each k = 1, 2, 3, there is an mk > 0 such

that |u(k)(z)| ≤ mk for every z ∈ [x− δ, x+ δ]. Then

|R2(z, x, u)| ≤
m2

2
|z|2,

|R3(z, x, u)| ≤
m3

3!
|z|3

for every z ∈ [x− δ, x+ δ]. Moreover, 0 ≤ p(x, F, u) ≤ δ and, hence,

|R2(x− p(x, F, u), x, u)| ≤ m2

2
(p(x, F, u))2 ≤ m2

2
δ2.
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By the Cauchy-Schwartz inequality,∣∣∣∣∫ R3(z, x, u) dF (z)

∣∣∣∣ = ∣∣∣∣∫ R3(z, x, u)

(z − x)2
(z − x)2 dF (z)

∣∣∣∣
≤

(∫ (
R3(z, x, u)

(z − x)2

)2

dF (z)

)1/2(∫ (
(z − x)2

)2
dF (z)

)1/2

.

(19)

Note that

|R3(z, x, u)|
(z − x)2

≤ m3

3!

|z − x|3

(z − x)2
=
m3

3!
|z − x|

for every z ∈ [x− δ, x+ δ]. Thus,∫ (
R3(z, x, u)

(z − x)2

)2

dF (z) ≤
(m3

3!

)2
δ2.

Again by the Cauchy-Schwartz inequality,

(∫ (
(z − x)2

)2
dF (z)

)1/2

≤

((∫
(z − x)2dF (z)

)1/2
)2

≤ δ2.

By (19), ∣∣∣∣∫ R3(z, x, u) dF (z)

∣∣∣∣ ≤ m3

3!
δ2.

Hence, ∣∣∣∣R2(x− p(x, F, u), x, u)−
∫
R3(z, x, u) dF (z)

∣∣∣∣ ≤ (m2

2
+
m3

3!

)
δ2.

Thus, ∣∣∣∣p(x, F, u)− 1

2
a(x, u)V (F )

∣∣∣∣ ≤ 1

m1

(m2

2
+
m3

3!

)
δ2.

An analogous inequality holds for v. Thus, for every ε > 0, if δ > 0 is sufficiently small,

then ∣∣∣∣p(x, F, v)p(x, F, u)
− a(x, v)

a(x, u)

∣∣∣∣ = ∣∣∣∣p(x, F, v)p(x, F, u)
− (1/2)a(x, v)V (F )

(1/2)a(x, u)V (F )

∣∣∣∣ < ε.

///

Proof of Theorem 1 Suppose that (u1, v1) ▷ (u2, v2). For each n, let xn ∈ In. By (8),

23



there are a τ1 and a τ2 such that

a(x1, v1)

a(x1, u1)
> τ1 > τ2 >

a(x2, v2)

a(x2, u2)
.

By Lemma 1, for each n, there is a δn > 0 such that for every Fn ∈ F (xn, δn),

p(x1, F1, v1)

p(x1, F1, u1)
> τ1 and τ2 >

p(x2, F2, v2)

p(x2, F2, u2)
.

Then let

q1 ∈
(
p(x1, F1, u1),

p(x1, F1, v1)

τ1

)
,

q2 ∈
(
p(x2, F2, v2)

τ2
, p(x2, F2, u2)

)
.

Then,

q1 > p(x1, F1, u1),

τ1q1 < p(x1, F1, v1),

q2 < p(x2, F2, u2),

τ2q2 > p(x2, F2, v2).

By the definition (18), the four inequalities of Condition 2 of Definition 2 are met. Thus

(u1, v1)▷̊(u2, v2). Therefore, ▷⊆ ▷̊.

Suppose that (u1, v1)▷̊(u2, v2). For each n, let xn ∈ In. Let τn and δn be as in

Definition 2. Let ε = τ1 − τ2. By Lemma 1, there is an Fn ∈ Fn(xn, δn) such that∣∣∣∣p(xn, Fn, vn)

p(xn, Fn, un)
− a(xn, vn)

a(xn, un)

∣∣∣∣ < ε

2
.

By the four inequalities in Definition 2,

p(x1, F1, v1)

p(x1, F1, u1)
≥ τ1 and τ2 ≥

p(x2, F2, v2)

p(x2, F2, u2)
.

Thus,

a(x1, v1)

a(x1, u1)
> τ1 −

ε

2
= τ2 +

ε

2
>
a(x2, v2)

a(x2, u2)
.

Hence, (u1, v1) ▷ (u2, v2). Thus, ▷̊ ⊆▷. Since ▷⊆ ▷̊, we have shown that ▷= ▷̊.

It follows immediately from the definition that ▷̊ ⊆ ▶̊. We prove by contraposition

that ▶̊ ⊆▶. That is, we show that if (u1, v1) ̸▶ (u2, v2), then (u1, v1) ̸ ▶̊(u2, v2). To do
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so, note that if (u1, v1)▶̊(u2, v2), then for every Fn ∈ F (xn, δn),

q1 ≥ p(x1, F1, u1),

τ1q1 ≤ p(x1, F1, v1),

q2 ≤ p(x2, F2, u2),

τ2q2 ≥ p(x2, F2, v2).

Since τ1 ≥ τ2,

p(x1, F1, v1)

p(x1, F1, u1)
≥ p(x2, F2, v2)

p(x2, F2, u2)
.

To show that ▶̊ ⊆▶, therefore, it suffices to prove that if (u1, v1) ̸▶ (u2, v2), then, for each

n, there is an xn ∈ In such that for every δn > 0 and τn > 0, there is an Fn ∈ F (xn, δn)

such that

p(x1, F1, v1)

p(x1, F1, u1)
<
p(x2, F2, v2)

p(x2, F2, u2)
. (20)

In fact, if (u1, v1) ̸▶ (u2, v2), then, for each n, there is an xn such that

a(x1, v1)

a(x1, u1)
<
a(x2, v2)

a(x2, u2)
.

By Lemma 1, for every sufficiently small δn > 0 and every Fn ∈ Fn(xn, δn), (20) holds.

///

Proof of Theorem 2 Suppose that (u1, v1)▷̊(u2, v2). For each n, let xn ∈ In. Let

τn and δn be as in Definition 2. Let dn, cn, and en satisfy the first two conditions of

Definition 4. Denote by Fn the cumulative distribution function of λ ◦ d−1
n and µn ◦ e−1

n .

Then Fn ∈ F (xn, δn) and

u1(x1 − q1) ≤
∫
u1(z1) dF1(z1), (21)

v1(x1 − τ1q1) ≥
∫
v1(z1) dF1(z1), (22)

u2(x2 − q2) ≥
∫
u2(z2) dF2(z2), (23)

v2(x2 − τ2q2) ≤
∫
v2(z2) dF2(z2). (24)
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Note that

Wn((xn − qn)ι) = vn(xn − qn), (25)

Wn((xn − τnqn)ι) = vn(xn − τnqn). (26)

By (16),

Wn(dn) = vn

(
u−1
n

(∫
[0,1]

un (dn(ξ)) dλ(ξ)

))
= vn

(
u−1
n

(∫
R

un (zn) dFn(zn)

))
(27)

By (17),

Wn(cn) =

∫
D

vn (en(π)) dµn(π) =

∫
R

vn(zn) dFn(zn). (28)

By applying v1 ◦ u−1
1 to both sides of (21), we obtain

v1(x1 − q1) ≤ v1

(
u−1
1

(∫
u1(z1) dF1(z1)

))
. (29)

By (22), (26), and (28), W1((x1 − τ1q1)ι) ≥ W1(c1). By (25), (27), and (29), W1((x1 −
q1)ι) ≤ W1(d1). We can analogously show that W2((x2 − q2)ι) ≥ W2(d2) and W2((x2 −
τ2q2)ι) ≤ W2(c2). Thus the third condition of Definition 4 is met. Thus, W1▷̂W2. This

proves that if (u1, v1)▷̊(u2, v2), then W1▷̂W2.

Since ▶̊ differs from ▷̊ only in τ1 > τ2 and τ1 ≥ τ2, the above proof can be used to

show that if (u1, v1)▶̊(u2, v2), then W1▶̂W2. ///

To prove Theorem 3, we need a lemma on second-order consumption plans. Assume

that µ is not degenerate. This is equivalent to saying that there is a measurable subset

Υ of Ω such that the function π 7→ π(T ) of D into [0, 1] is not constant on any set to

which µ gives measure one. We keep such an Υ fixed until the end of the next lemma.

For each x ∈ R and x ∈ R, define c(x,x) ∈ C by letting, for each (ω, ξ) ∈ Ω× [0, 1],

c(x,x)(ω, ξ) =

{
x if ω ∈ Υ,

x otherwise.
(30)

Note that c(x,x)(ω, ξ) is independent of ξ ∈ [0, 1] for every ω ∈ Ω. By an abuse of notation,

we also write c(x,x)(ω) in place of c(x,x)(ω, ξ).

Lemma 2 Let u : I → R be an expected utility function satisfying the basic condition.

For each x ∈ I and δ > 0, there are an x ∈ R and an x ∈ R such that 0 < x − x ≤ δ,
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0 < x− x ≤ δ, and ∫
D

u−1

(∫
Ω

u
(
c(x,x)(ω)

)
dπ(ω)

)
dµ(π) = x. (31)

To grasp a useful implication of this lemma, let e : D → I be the second-order

consumption plan associated with c(x,x), which is defined in (17), and denote by F the

cumulative distribution function of µ ◦ e−1. Since π 7→ π(Υ) is not constant on any set

to which µ gives measure one, V (F ) > 0. By (31),

x =

∫
D

e(π) dµ(π) =

∫
I

z d(µ ◦ e−1) = E(F ).

Thus, F ∈ F (x, δ).

Proof of Lemma 2 By the definition of c(x,x),

u−1

(∫
Ω

u
(
c(x,x)(ω)

)
dπ(ω)

)
= u−1 (u(x) + π(Υ)(u(x)− u(x))) .

We can assume without loss of generality that x − δ ∈ I and x + δ ∈ I. Since it is not

true that π(Υ) = 1 for µ-almost every π,∫
D

u−1 (u(x− δ) + π(Υ)(u(x)− u(x− δ))) dµ(π) < x.

By the bounded convergence theorem, for every x > x sufficiently close to x,∫
D

u−1 (u(x− δ) + π(Υ)(u(x)− u(x− δ))) dµ(π) < x. (32)

Thus, if there is no x ∈ (x, x+ δ] such that∫
D

u−1 (u(x) + π(Υ)(u(x)− u(x))) dµ(π) = x,

then, by the intermediate value theorem, (32) holds when x = x+ δ, that is,∫
D

u−1 (u(x− δ) + π(Υ)(u(x+ δ)− u(x− δ))) dµ(π) < x.

Since it is not true that µ(Υ) = 0 for µ-almost every µ,∫
D

u−1 (u(x) + π(Υ)(u(x+ δ)− u(x))) dµ(π) > x.
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By the bounded convergence theorem, for every x < x sufficiently close to x,∫
D

u−1 (u(x) + π(Υ)(u(x+ δ)− u(x))) dµ(π) > x.

Again, by the intermediate value theorem, there is a x ∈ (x− δ, x) such that∫
D

u−1 (u(x) + π(Υ)(u(x+ δ)− u(x))) dµ(π) = x.

Thus (31) holds. ///

Proof of Theorem 3 Suppose that W1▷̂W2. For each n, let xn ∈ In. Let τn and δn

be as in Definition 4. Then τ1 > τ2. Let ε = τ1 − τ2 > 0. By taking δn > 0 smaller if

necessary, we can assume that the conclusion of Lemma 1 holds for ε/2 and δn as well.

Apply Lemma 2 to xn and δn to obtain a consumption plan c
(xn,xn)
n , which is defined

in (30). Let en be the second-order consumption plan associated with c
(xn,xn)
n , which is

defined in (17). Denote by Fn the cumulative distribution function of µn ◦ e−1
n . Then

Fn ∈ F (xn, δn). Let dn : [0, 1] → In be the generalized inverse of Fn in the sense of

Embrecht and Hofert (2014). Then the cumulative distribution function of dn coincides

with Fn and λ ◦ d−1
n = µn ◦ e−1

n . Thus c
(xn,xn)
n and dn satisfy the first two conditions of

Definition 4. Thus the four inequalities in the last condition hold. Thus, by reverting the

argument in the proof of Theorem 2, we can show that

q1 ≥ p(x1, F1, u1),

τ1q1 ≤ p(x1, F1, v1),

q2 ≤ p(x2, F2, u2),

τ2q2 ≥ p(x2, F2, v2).

Hence

p(x1, F1, v1)

p(x1, F1, u1)
≥ τ1 > τ2 ≥

p(x2, F2, v2)

p(x2, F2, u2)
,

Thus, by Lemma 1,

a(x1, v1)

a(x1, u1)
> τ1 −

ε

2
= τ2 +

ε

2
>
a(x2, v2)

a(x2, u2)
.

Hence, (u1, v1) ▷ (u2, v2).

We shall next prove that if (u1, v1)▶̂(u2, v2), then (u1, v1) ▶ (u2, v2). We do so by

contraposition. Suppose that (u1, v1) ̸▶ (u2, v2). We need to show that (u1, v1) ̸ ▶̂(u2, v2),

that is, for each n, there is an xn ∈ In such that for every δn > 0 and every τn > 0, there

are a cn and a dn that satisfy the first two conditions of Definition 4 but do not satisfy
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the last one when τ1 ≥ τ2. As we showed when proving that ▷̂ ⊆▷, if τ1 ≥ τ2 and if cn

and dn satisfy the last condition of Definition 4, then

p(x1, F1, v1)

p(x1, F1, u1)
≥ p(x2, F2, v2)

p(x2, F2, u2)
,

where Fn is the cumulative distribution function of µn ◦ e−1
n and λ◦d−1

n . In the following,

therefore, it suffices to show that for each n, there is an xn ∈ In such that for every

δn > 0, there are a cn and a dn that satisfy the first two conditions of Definition 4 and,

yet, they also satisfy

p(x1, F1, v1)

p(x1, F1, u1)
<
p(x2, F2, v2)

p(x2, F2, u2)
. (33)

Since (u1, v1) ̸▶ (u2, v2), for each n, there is an xn ∈ In such that

a(x1, v1)

a(x1, u1)
<
a(x2, v2)

a(x2, u2)
.

Write

ε =
a(x2, v2)

a(x2, u2)
− a(x1, v1)

a(x1, u1)
.

Let δn be any positive number smaller than the δn that is obtained in Lemma 1 for ε/2.

Apply Lemma 2 to xn and δn to obtain a consumption plan c
(xn,xn)
n , which is defined

in (30). Let en be the second-order consumption plan associated with c
(xn,xn)
n , which is

defined in (17). Denote by Fn the cumulative distribution function of µn ◦ e−1
n . Then

Fn ∈ F (xn, δn) and

p(x1, F1, v1)

p(x1, F1, u1)
<
a(x1, v1)

a(x1, u1)
+
ε

2
=
a(x2, v2)

a(x2, u2)
− ε

2
<
p(x2, F2, v2)

p(x2, F2, u2)
.

This implies (33) and completes the proof. ///
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