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Abstract

Following LeRoy and Werner (2001), we propose a definition of effectively complete
asset markets in a model with multiple goods and multiple periods, and establish the first
welfare theorem in such markets. As applications of the theorem, we derive the Pareto-
efficiency of equilibrium allocation in economies with no aggregate risk and the mutual
fund theorem. We also extend the sunspot irrelevance theorem of Mas-Colell (1992) to the
model of multiple periods and the no-retrade theorem of Judd, Kubler, and Schmedders
(2003) and Kubler and Schmedders (2003) to the case where the asset prices need not be
time-invariant Markov processes.
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1 Introduction

Asset markets are said to be complete if any pattern of transfers of contingent commodities
across states and over time can be financed by trading assets. In the case of two consumption
periods, with no uncertainty on the first period and S possible states of the world on the
second, asset markets are complete if and only if there are S non-redundant assets. In complete
asset markets, the equilibrium allocations are Pareto-efficient.

If we impose some restrictions utility functions and initial endowments, then we may
narrow down the class of Pareto-efficient allocations, and hence the class of patterns of trans-
fers of contingent commodities attaining Pareto-efficient allocations. It might even be true,
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on this paper. I also received helpful comments from seminar participants at Hosei University, especially
Midori Hirokawa, Atsushi Kajii, and Nobusumi Sagara. The financial assistance from the Grant in Aid for
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Intergenerational Problems”, and from Inamori Foundation on “Efficient Risk-Sharing: An Application of
Finance Theory to Development Economics”. My email address is hara@kier.kyoto-u.ac.jp.
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in the case of two consumption periods, that with fewer than S non-redundant assets, the
equilibrium allocations are Pareto-efficient, as in the case of complete asset markets.

LeRoy and Werner (2001, Section 16.3) made this observation precise by giving a def-
inition of effectively complete asset markets in a model of a single consumption good and
two consumption periods. They defined asset markets as being effectively complete if every
Pareto-efficient allocation can be attained through some trades of assets, and proved (Theo-
rem 16.4.1) that the equilibrium allocations are Pareto-efficient in effectively complete asset
markets. They then provided three examples, to be touched on later, for which asset markets
are effectively complete and equilibrium allocations are easy to characterize. These examples
shows that the notion of effectively complete asset market, restrictive as it may seem, deserves
special attention thanks to its applicability to many important economic issues.

In this paper, we extend LeRoy and Werner’s definition of effectively complete asset mar-
kets to the case of multiple goods and over multiple periods. Although the extension is
straightforward and the class of economies with effectively complete asset markets is not very
large, it admits several important applications. We then prove that, as in the case of the
original definition of LeRoy and Werner (2001), if asset markets are effectively complete, then
every equilibrium allocation is Pareto-efficient. This is our first welfare theorem in effectively
complete asset markets.

In a number of special classes of economies, Pareto-efficient allocations are easy to charac-
terize and asset markets are effectively complete. For such economies, the first welfare theorem
in effectively complete asset markets can be used to characterize equilibrium allocations. The
first application of the theorem, presented in Section 4, is to show that if the aggregate endow-
ments are deterministic and constant over time, each consumer’s endowments are generated
by a portfolio of traded assets, and if all of them have the same discount factor, then each
consumer’s consumptions are also deterministic and constant over time. The second applica-
tion, presented in Section 5, is the mutual fund theorem, which claims that if each consumer’s
endowments are generated by a portfolio of traded assets and all consumers have constant and
equal relative risk aversion, and also equal discount factors, then each of them holds a frac-
tion of aggregate endowments at equilibrium, and the fraction is deterministic and constant
over time. The third application, presented in Section 6, is to extend the sunspot irrelevance
theorem of Mas-Colell (1992) by showing that, in economies with no fundamental risk, if the
aggregate endowments are constant over time, all consumers have the same discount factor,
and if for each consumption good, there is a “consol,” which always pays one unit of the good
over the entire time span, then each consumer’s consumptions are deterministic and constant
over time. The fourth application, presented in Section 7, is to extend the no-retrade theorem
in Markov economies of Judd, Kubler, and Schmedders (2003) and Kubler and Schmedders
(2003) to the case where the asset prices need not be time-invariant Markov processes.

There are, of course, special classes of effectively complete asset markets that we shall not
analyze here. LeRoy and Werner (2001, Section 16.6) argued that if options of all exercise
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prices are traded,1 then asset markets are effectively complete. In a dynamic model, Baptista
(2003) showed that if American call and put options of all exercise prices are traded,2 then
asset markets are generically complete. He also showed by means of an example that more
European options may be necessary to make asset markets complete than American options.

Another topic we shall not pursue in this paper is what can be termed as “asymptotically
effectively complete” asset markets, that is, asset markets in which the equilibrium prices,
consumptions, and utility levels are all close to their counterparts obtained in complete asset
markets if there are sufficiently many, possibly infinitely many, periods and the consumers’
discount factors are close to one. Levine and Zame (2002) asked under what conditions on
asset markets they are or are not asymptotically effectively complete in models with infinitely
many periods. They obtained three results. First, if there is only one consumption good
and there is no aggregate risk, then short-lived riskless bonds are sufficient to make markets
asymptotically effectively complete. Second, even when the aggregate endowments are risky,
if there is only one consumption good, the shares of aggregate endowments across consumers
are stochastically independent of aggregate endowments, short-lived riskless bonds are always
available for trade, asset markets for aggregate endowments are complete, and if the consumers
have constant and equal relative risk aversion, then asset markets are asymptotically effectively
complete. Third, when there are more than one consumption goods, asset markets may not
be asymptotically effectively complete even if there is no fundamental risk and short-lived
riskless bonds are always available for trade.

Although we do not analyze asymptotic effective completeness, we do take up special
classes of economies that are similar to those investigated by Levine and Zame (2002). In
economies with no aggregate risk taken up in Section 4 and in economies with constant and
equal relative risk aversion taken up in Section 5, our additional assumption, over those for
the first two results of Levine and Zame (2002), is that each consumer’s endowments are
generated by a portfolio of traded assets, which guarantees that asset markets are effectively
complete. In economies with no fundamental risk considered by Levine and Zame (2002),
the (relative) spot prices fluctuate over time, and this fluctuation can be considered as being
generated by sunspots. In economies with no fundamental risk taken up in Section 6, our
additional assumption, over those for the third result of Levine and Zame (2002), is that for
each consumption good there is a consol, which pays always one unit of the good over the
entire time span. Our result in that section implies that the consols are sufficient to prevent
sunspots from generating spot-price fluctuations. The results in this paper, therefore, clarify
the assumptions needed to guarantee that the equilibrium allocations are Pareto-efficient even
when there are only few periods or the consumers are fairly impatient.

This paper is organized as follows. Section 2 describes the setup for our analysis. Section
3 gives the definition of effectively complete asset markets and establishes the first welfare
theorem. Section 4 provides the first application of effectively complete asset markets by

1More generally, if the payoff of the option of any exercise price can be obtained by trading assets.
2More generally, if the payoff of any such option can be obtained by trading assets.
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establishing effective completeness in economies with no aggregate risk. Section 5 proves the
mutual fund theorem. Section 6 extends the sunspot irrelevance theorem to our dynamic
setting. Section 7 extends the no-retrade theorem. Section 8 sums up our analysis and
suggests a direction of future research.

2 Setup and complete markets

There are 1+T periods, t = 0, 1, . . . , T . There are S possible states of the world, s = 1, 2, . . . , S
over the entire time span {0, 1, . . . , T}. The gradual information revelation concerning the
true state of the world is given by the filtration (F0,F1, . . . ,FT ). We assume that F0 =
{∅, {1, 2, . . . , S}} and FT coincides with the power set of {1, 2, . . . , S}. Let P be a probability
measure on {1, 2, . . . , S} such that P ({s}) > 0 for every s. For each positive integer n, we
denote by Xn the set of all processes taking values in Rn over the time span {0, 1, . . . , T}
that are adapted to the filtration (F0,F1, . . . ,FT ). This is a linear space of finite dimension.
Denote by Xn

+ the set of all processes taking values in Rn
+, and by Xn

++ the set of all processes
in Xn taking values in Rn

++.
There are L types of physically distinguished perishable goods, ` = 1, 2, . . . , L on each

period and state.
There are I consumers, i = 1, 2, . . . , I. Their consumption sets are XL

+, utility functions
are Ui : XL

+ → R, and initial endowments are ei = (ei0, e
i
t, . . . , e

i
T ) ∈ XL. We assume that

the Ui are continuous and strongly monotone. We say that an allocation (x1, x2, . . . , xI)
of contingent commodities (consumption processes) is feasible if xi ∈ XL

+ for every i and∑
i x

i =
∑

i e
i.

Definition 1 A feasible allocation (x1∗, x2∗, . . . , xI∗) of consumption processes is Pareto-superior
to another feasible allocation (x1, x2, . . . , xI) if Ui(xi∗) ≥ Ui(xi) for every i and Ui(xi) > Ui(xi∗)
for some i. It is Pareto-efficient if no other feasible allocation is Pareto-superior to it.

A contingent-commodity price process is an element of XL that represents the prices,
at t = 0, for all the contingent commodities available over the entire time span. Under a
contingent-commodity price process π = (π0, π1, . . . , πT ), consumer i can afford the consump-
tion processes xi ∈ XL

+ that satisfy

E

(
T∑

t=0

πt ·
(
xit − eit

)
)
≤ 0. (1)

Definition 2 The pair of a feasible contingent-commodity allocation (x1∗, x2∗, . . . , xI∗) and a
contingent-commodity price process π is a contingent-commodity market equilibrium if for
every i, xi = xi∗ maximizes Ui(xi) under the budget constraint (1).

Since the first welfare theorem is valid for a contingent-commodity market equilibrium, every
contingent-commodity equilibrium allocation is Pareto-efficient.
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Suppose now that there are J assets, j = 1, 2, . . . , J , available for trade in the economy.
Each asset j is characterized by its dividend process dj = (dj0, d

j
t , . . . , d

j
T ) ∈ XL. An asset

price process is an element of XJ that represents the transition, expected by all consumers,
of asset prices under uncertainty and over time. A spot price process is, just like a contingent-
commodity price process, an element of XL but it is interpreted as representing the transition,
expected by all consumers, of prices for the L goods, for immediate consumption, under
uncertainty and over time. A trading plan is an element of XJ that represents the transition,
planned by a consumer, of portfolios of the J assets under uncertainty and over time.

Suppose consumer i employs a trading plan yi under the asset price process q and a spot
price process p. Define dy

i
= (dy

i

0 , d
yi

1 , . . . , d
yi

T ) ∈ X1 by

dy
i

0 = −
∑

j

qj0y
ji
0 , (2)

dy
i

t =
∑

j

yjit−1(pt · djt )−
∑

j

qjt (y
ji
t − yjit−1) for every t ≥ 1, (3)

where q = (q0, q1, . . . , qT ) with qt = (q1
t , q

2
t , . . . , q

J
t ) for each t, p = (p0, p1, . . . , pT ), and yi =

(yi0, y
i
1, . . . , y

i
T ) with yit = (y1i

t , y
2i
t , . . . , y

Ji
t ) for each t. Then he can finance any consumption

process xi ∈ XL
+ that satisfies

pt ·
(
xit − eit

) ≤ dyit (4)

for every t ≥ 0, where xi = (xi0, x
i
1, . . . , x

i
T ).

An allocation (y1, y2, . . . , yI) of trading plans is feasible if
∑

i y
i = 0.

Definition 3 The collection of a feasible allocation (x1∗, x2∗, . . . , xI∗) of consumption processes,
a feasible allocation (y1∗, y2∗, . . . , yI∗) of trading plans, an asset price process q, and a spot price
process p is an asset market equilibrium if for every i, (xi, yi) = (xi∗, yi∗) maximizes Ui(xi)
under the budget constraint (4) for every t ≥ 0.

Since the Ui are strongly monotone, p ∈ XL
++ and the weak inequality in (4) holds as an

equality.
If L = 1, then, by replacing qt by (1/pt)qt, we can assume that pt = 1 for every t. This

convention will be used throughout this paper without further notice. Even when L ≥ 2,
for every λ ∈ X1

++, the collection of (x1∗, x2∗, . . . , xI∗), (y1∗, y2∗, . . . , yI∗), an asset price process
(λ0q0, λ1q1, . . . , λT qT ), and a spot price process (λ0p0, λ1p1, . . . , λT pT ) is an asset market
equilibrium. This property of an asset market equilibrium is often referred to as the numéraire
invariance in the finance literature.

A trading plan yi is called an arbitrage under an asset price process q and a spot price
process p ∈ XL if dy

i
= (dy

i

0 , d
yi

1 , . . . , d
yi

T ) ∈ X1
+ \ {0}, where the dy

i

t are defined by (2) and
(3). An arbitrage is a trading strategy that neither requires investment nor incurs obligation,
and yet generates positive revenues on some period with positive probability. If there is no
arbitrage under an asset price process q and a spot price process p, we say that q and p are

5



arbitrage-free. Since the utility functions Ui are strongly monotone, if q and p are equilibrium
price processes, then they are arbitrage-free. It is well known that whenever q and p are
arbitrage-free, then there is a λ ∈ X1

++ such that

E

(
T∑

t=0

λtd
yi

t

)
= 0 (5)

for every yi ∈ XJ . For any such λ, it can be shown that

∑

j

qjt y
ji
t = Et

(
T∑

τ=t+1

λτ
λt
dy

i

τ

)
(6)

for every yi ∈ XJ and t ≤ T − 1.
Denote by M(q, p) the set of all zi ∈ XL for which there is a yi ∈ XJ such that pt ·zit = dy

i

t

for every t ≥ 1. This is a linear subspace of XL, often called the market span. Complete asset
markets are then defined in terms of M(q, p)

Definition 4 Asset markets are complete under the equilibrium asset price process q and
spot price process p if M(q, p) = XJ .

A contingent-commodity price process π ∈ XL is said to support the contingent-commodity
allocation (x1∗, x2∗, . . . , xI∗) on M(q, p) if for every i and xi ∈ XL

+, E
(∑T

t=0 πt ·
(
xit − xi∗t

))
> 0

whenever Ui(xi) > Ui(xi∗) and xi − xi∗ ∈ M(q, p). Then, for every λ ∈ X1
++ satisfying (5),

(λ0p0, λ1p1, . . . , λT pT ) supports (x1∗, x2∗, . . . , xI∗) on M(q, p). Indeed, every xi that satisfies
E
(∑T

t=0 λtpt ·
(
xit − xi∗t

)) ≤ 0 also satisfies E
(∑T

t=0 λtpt ·
(
xit − eit

)) ≤ 0. By (6),

E

(
T∑

t=0

λtpt ·
(
xit − eit

)
)

= λ0


p0 ·

(
xi0 − ei0

)
+
∑

j

qj0y
ji
0


 . (7)

for some trading plan yi ∈ XJ . Since E
(∑T

t=0 λtpt ·
(
xit − eit

)) ≤ 0, p0 ·
(
xi0 − ei0

)
+
∑

j q
j
0y
ji
0 ≤

0. This means that (xi, yi) satisfies the budget constraint of the asset market equilibrium.
Hence Ui(xi) ≤ Ui(xi).

The following theorem is (one direction of) the well known equivalence between asset
market equilibria in complete markets and contingent-commodity market equilibria. Since
the first welfare theorem holds for contingent-commodity market equilibria, the equivalence
implies that the asset market equilibrium allocations in complete markets are Pareto efficient.

Theorem 1 If the collection of an allocation (x1∗, x2∗, . . . , xI∗) of contingent commodities, an
allocation (y1∗, y2∗, . . . , yI∗) of trading plans, an asset price process q, and a spot price process
p is an asset market equilibrium, and if asset markets are complete under q and p, then
(x1∗, x2∗, . . . , xI∗) is Pareto-efficient. Moreover, there exists a λ ∈ X1

++ such that (6) holds and
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the pair of (x1∗, x2∗, . . . , xI∗) and a contingent-commodity price process (λ0p0, λ1p1, . . . , λT pT ) is
a contingent-commodity market equilibrium.

3 Effectively complete markets and the first welfare theorem

We now give the definition of effectively complete asset markets.

Definition 5 Asset markets are effectively complete under the equilibrium asset price process
q and spot price process p if for every Pareto-efficient allocation (x1, x2, . . . , xI) of contingent
commodities that is Pareto-superior to the equilibrium contingent-commodity allocation and
for every i, xi − ei ∈M(q, p).

According to this definition, asset markets are effectively complete if at every Pareto-efficient
allocation that is Pareto-superior to the equilibrium allocation,3 every consumer can finance
his consumption process by trading goods and assets under the equilibrium asset and spot
price processes.4

If the equilibrium contingent-commodity allocation is Pareto-efficient, then asset markets
are, trivially, effectively complete under the equilibrium asset and spot price process. It also
follows directly from the definition that complete asset markets are effectively complete.

A sufficient condition for asset markets to be effectively complete is that every Pareto-
efficient allocation be attainable by the buy-and-hold strategies, even without trading on
spot markets at all. It is a simple and yet useful condition, because it is independent of the
equilibrium price processes. Indeed, it is satisfied by all the examples of effectively complete
asset markets in the next four sections.

Lemma 1 Asset markets are effectively complete if for every individually rational and Pareto-
efficient allocation (x1, x2, . . . , xI) and for every i, there exists a θi ∈ RJ such that

xit − eit =
∑

j

θjidjt (8)

for every t ≥ 1.

Proof of Lemma 1 Let the collection of an allocation (x1∗, x2∗, . . . , xI∗) of consumption
processes, an allocation (y1∗, y2∗, . . . , yI∗) of trading plans, an asset price process q, and a spot
price process p be an asset market equilibrium. Let (x1, x2, . . . , xI) be a Pareto-efficient
allocation that is Pareto-superior to (x1∗, x2∗, . . . , xI∗). Since (x1∗, x2∗, . . . , xI∗) is individually

3Since the utility functions are not assumed to be strictly quasi-concave, there may be multiple equilibrium
contingent-commodity allocations, given the asset price process q and spot price process p. Yet the requirement
that (x1, x2, . . . , xI) be Pareto-superior to the equilibrium allocation does not depend on its choice, because
every consumer is indifferent between his own consumption processes of any two equilibrium allocations of the
same equilibrium price processes.

4I am grateful to the anonymous referee for pointing out that the original definition of effective completeness,
which is essentially the same as the condition in Lemma 1, is too demanding and suggesting a less demanding
definition similar to this one.
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rational, so is (x1, x2, . . . , xI). Thus, for every i, there exists a θi ∈ RJ for which (8) holds.
Define yi ∈ XJ by letting yit = θi for every t ≥ 0. Since yit − yit−1 = 0, (8) implies that

dy
i

t =
∑

j

θji
(
pt · djt

)
= pt ·


∑

j

θjidjt


 = pt ·

(
xit − eit

)

for every t ≥ 1. Thus xi − ei ∈M(q, p) and asset markets are effectively complete. ///

Although effective completeness is less demanding than completeness, the first welfare the-
orem is still valid in effectively complete asset markets. In other words, effective completeness
of asset markets is not only necessary but also sufficient for Pareto-efficiency of the equilib-
rium contingent-commodity allocations. It is because of this theorem that we have dubbed
the property stated in Definition 5 “effective completeness”.

Theorem 2 If the collection of an allocation (x1∗, x2∗, . . . , xI∗) of contingent commodities, an
allocation (y1∗, y2∗, . . . , yI∗) of trading plans, an asset price process q, and a spot price process
p is an asset market equilibrium, and if asset markets are effectively complete under q and p,
then (x1∗, x2∗, . . . , xI∗) is Pareto-efficient.

Proof of Theorem 2 Suppose that the collection of a contingent-commodity allocation
(x1∗, x2∗, . . . , xI∗), an allocation (y1∗, y2∗, . . . , yI∗) of trading plans, an asset price process q, and a
spot price process p is an asset market equilibrium, and that a feasible contingent-commodity
allocation (x1, x2, . . . , xI) is Pareto-superior to (x1∗, x2∗, . . . , xI∗).

As shown in LeRoy and Werner (2001, Proposition 16.3.2), since the consumption sets are
closed and bounded from below and the utility functions are continuous, there is a Pareto-
efficient allocation that is Pareto-superior to (x1∗, x2∗, . . . , xI∗). Without loss of generality, there-
fore, we can assume that (x1, x2, . . . , xI) is Pareto-efficient. By effective completeness, for
each i ≥ 2, there exists a yi ∈ XJ such that (4) is satisfied on each period t ≥ 1. Let
y1 = −∑i≥2 y

i ∈ XJ , then (y1, y2, . . . , yI) is a feasible allocation of trading plans and (4) is
satisfied for i = 1 on each period t ≥ 1. Thus, for every i with Ui(xi) > Ui(xi∗), (4) fails to
hold on period 0, that is,

p0 ·
(
xi0 − ei0

)
> −

∑

j

qj0y
ji
0 . (9)

For every i with Ui(xi) = Ui(xi∗), since Ui is strongly monotone,

p0 ·
(
xi0 − ei0

) ≥ −
∑

j

qj0y
ji
0 . (10)

Summing up (9) and (10) over i and using the feasibility constraints, we obtain

0 > −
∑

j

qj0

(∑

i

yji0

)
= 0,
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which is a contradiction. Thus (x1∗, x2∗, . . . , xI∗) is Pareto-efficient. ///

Unlike completeness, effective completeness falls short of guaranteeing that the equilibrium
allocation is also obtained at some contingent-commodity market equilibrium. The following
example is constructed by modifying the utility functions in Example 16.4.4 of LeRoy and
Werner (2001) to satisfy strong monotonicity.

Example 1 Let T = 1, S = 2, L = 1, and I = 2. Define consumer 1’s initial endowment
e1 = (e1

0, e
1
1) = (e1

0, (e
1
1(1), e1

1(2))) by letting e1
0 = 1, e1

1(1) = 0, and e1
1(2) = 1. Define

consumer 2’s initial endowment e2 = (e2
0, e

2
1) = (e2

0, (e
2
1(1), e2

1(2))) by letting e2
0 = 1, e2

1(1) = 1,
and e2

1(2) = 0. Let a ∈ (1/2, 1). Define consumer 1’s utility function U1 by letting

U1(x1) = x1
0 + ax1

1(1) + (1− a)x1
1(2)

for every x1 = (x1
0, (x

1
1(1), x1

1(2))) ∈ X1
+. Define consumer 2’s utility function U2 by letting

U2(x2) = x2
0 + (1− a)x2

1(1) + ax2
1(2)

for every x2 = (x2
0, (x

2
1(1), x2

1(2))) ∈ X1
+.

Let J = 1 and define the dividend process d1 = (d1
0, (d

1
1(1), d1

1(2))) by letting d1
0 = 0

d1
1(1) = 1 and d1

1(2) = −1.

Proposition 1 In Example 1:

1. For every b ∈ (−1, 1), the consumption allocation (x1∗, x2∗) defined by

x1
∗ = (1− b, (1, 0)) and x2

∗ = (1 + b, (0, 1)). (11)

is Pareto-efficient, and it has an essentially unique supporting contingent-commodity
price process, given by π = (1, (a, a)).

2. There is a unique contingent-commodity market equilibrium ((x1∗, x2∗), π), which is given
by b = 0 in (11).

3. For every asset market equilibrium ((x1∗, x2∗), (y1∗, y2∗), q), there is a b ∈ (1 − 2a, 2a − 1)
such that (x1∗, x2∗) is given by (11) and

y1
∗ = (1, (0, 0)),

y2
∗ = (−1, (0, 0)),

q = (b, (0, 0)).

Asset markets are effectively complete under every equilibrium asset price.

4. The contingent-commodity allocations of some asset market equilibria are not the same
as the contingent-commodity allocation of the contingent-commodity market equilibrium.
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Instead of providing a formal proof of this proposition, we give some intuitive account on
it. Part 1 characterizes some, but not all, Pareto-efficient allocations. It shows that due to
the difference in marginal utilities, a and 1− a, from consumptions in the two states on time
1, it is efficient for each consumer to consume only in one of the two states. Since the utility
functions are strongly monotone, for each b ∈ [0, 1], the contingent-commodity allocations
(x1∗, x2∗) defined by

x1
∗ = (0, (1− b, 0)) and x2

∗ = (2, (b, 1)).

and also by

x1
∗ = (2, (1, b)) and x2

∗ = (0, (0, 1− b)).

are Pareto-efficient. These allocations, however, are neither individually rational nor attain-
able by trading the asset. Part 2 tells us which one of the Pareto-efficient allocations is
an equilibrium allocation. Part 3 shows that there is a continuum of asset market equi-
libria, all of which share the same period-1 contingent-commodity allocations. Since asset
markets are incomplete with the degree of incompleteness S − J = 1, for each equilibrium
contingent-commodity allocation, there is one degree of freedom of the contingent-commodity
price processes that support it on the market span M(q, p). Yet, there is one more degree of
freedom of the supporting price processes, because the equilibrium contingent-commodity
allocations lie on the boundary of each consumer’s consumption set X1

+. Indeed, every
π = (π0, (π1

1, π
2
1)) ∈ X1

++ satisfying π0 = 1 and 1 − 2a < π1
1 − π2

1 < 2a − 1 supports (x1∗, x2∗)
on M(q, p). As observed by Elul (1999), this additional degree of freedom is the driving
force behind Part 4: unless b = 0 in (11), the asset market equilibrium allocation is not a
contingent-commodity equilibrium allocation.

We now formalize the last point of the previous paragraph. Let the collection of the
contingent-commodity allocation (x1∗, x2∗, . . . , xI∗), the trading-plan allocation (y1∗, y2∗, . . . , yI∗),
the asset price process q, and the spot price process p be an asset market equilibrium. For
every λ ∈ X1

++, if (5) holds, then (λ0p0, λ1p1, . . . , λT pT ) supports (x1∗, x2∗, . . . , xI∗) on M(q, p).
As Example 1 shows, however, there may be other contingent-commodity price processes that
support (x1∗, x2∗, . . . , xI∗) on M(q, p). The following theorem shows that if there is essentially
no other contingent-commodity price process, then the equilibrium allocation is the same as
the equilibrium allocation of some contingent-commodity market equilibrium.

Theorem 3 Suppose that Ui is quasi-concave for every i. Let the collection of the contingent-
commodity allocation (x1∗, x2∗, . . . , xI∗), the trading plan allocation (y1∗, y2∗, . . . , yI∗), the asset
price process q, and the spot price process p be an asset market equilibrium. Suppose that
asset markets are effectively complete under q and p. Suppose also that for every π ∈ XL, if
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π supports (x1∗, x2∗, . . . , xI∗) on M(q, p), then there exists a λ ∈ X1
++ such that (5) holds and

E

(
T∑

t=0

λtpt · zt
)

= E

(
T∑

t=0

πt · zt
)

(12)

for every z ∈M(q, p). Then there exists a π ∈ X1 such that the pair of (x1∗, x2∗, . . . , xI∗) and π
is a contingent-commodity market equilibrium.

Proof of Theorem 3 Since the Ui are strongly monotone and quasi-concave, there exists a
π ∈ XL

++ that supports (x1∗, x2∗, . . . , xI∗) on XL.5 It suffices to show that for every i,

E

(
T∑

t=0

πt ·
(
xi∗t − eit

)
)
≤ 0. (13)

Indeed, since π ∈ XL
++ supports (x1∗, x2∗, . . . , xI∗) on XL, it does so on M(q, p) in particular.

By assumption, there exists a λ ∈ X1
++ for which (5) and (12) hold. Since xi∗t− eit ∈M(q, p),

E

(
T∑

t=0

πt ·
(
xi∗t − eit

)
)

= E

(
T∑

t=0

λtpt ·
(
xi∗t − eit

)
)

= λ0


p0 ·

(
xi∗0 − ei0

)
+
∑

j

qj0y
ji
0


 ≤ 0,

where the second equality following from (7) and the last inequality follows from the budget
constraint of the asset market equilibrium. ///

The crucial assumption of this theorem is that for every π ∈ XL supporting (x1∗, x2∗, . . . , xI∗)
on M(q, p), there exists a λ ∈ X1

++ such that (5) and (12) hold. Since there is no arbitrage
under equilibrium price processes, there always exists a λ ∈ X1

++ such that (5) holds. Thus,
there always exists a contingent-commodity price process of the form (λ0p0, λ1p1, . . . , λT pT )
that supports (x1∗, x2∗, . . . , xI∗) on M(q, p). Hence, the assumption is met if the supporting
contingent-commodity price process is essentially unique on M(q, p). Stated formally, the
assumption is met if there exists a k ∈ R++ such that

E

(
T∑

t=0

πt · zt
)

= kE

(
T∑

t=0

ϕt · zt
)

for every z ∈ M(q, p) whenever both π ∈ XL
++ and ϕ ∈ XL

++ support (x1∗, x2∗, . . . , xI∗) on
M(q, p). As shown by Elul (1999), this essential uniqueness is obtained if there is a consumer
i such that xi∗ ∈ XL

++ and Ui is differentiable. More generally, the assumption is met if there
is a basis of M(q, p) of the form (z0, z1, . . . , zN ) such that for every n = 1, 2, . . . , N , there

5The standard second welfare theorem only claims that π ∈ XL
++ supports (x1

∗, x
2
∗, . . . , x

I
∗) on XL in the

weak sense, that is, E
(∑T

t=0 πt · xit
)
≥ E

(∑T
t=0 πt · xi∗t

)
whenever Ui(x

i) > Ui(x
i
∗). However, since the

consumption sets are XL
+ and the utility functions Ui are strongly monotone in our setting, the strict inequality,

E
(∑T

t=0 πt · xit
)
> E

(∑T
t=0 πt · xi∗t

)
, is obtained.
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exists a consumer i such that xi∗+ a0z1 + anzn ∈ XL
+ for every (a0, an) ∈ R2 sufficiently close

to (0, 0), and if Ui is differentiable at xi∗ on the plane spanned by z0 and zn. In this case,
the relative price between z0 and zn embedded in any contingent-commodity price process
supporting (x1∗, x2∗, . . . , xI∗) on M(q, p) is uniquely determined by consumer i’s marginal rate
of substitution between them. Since this is true for all n, the contingent-commodity price
process supporting (x1∗, x2∗, . . . , xI∗) on M(q, p) is uniquely determined on M(q, p), and hence
the assumption of Theorem 3 is met.

4 No aggregate risk

In this section, we give our first application of Theorem 2, the first welfare theorem in ef-
fectively complete markets. It is that asset markets are effectively complete when all the
consumers’ initial endowments are, in fact, endowments in the traded assets, the aggregate
endowments deterministic and constant over time, and the consumers have the same discount
factor.

Formally, we assume that L = 1, that is, there is only one good in each state and on each
period. Assume also that there is a δ > 0 such that

Ui(xi) = E

(
T∑

t=0

δtui
(
xit
)
)

=
T∑

t=0

S∑

s=1

δtP ({s})ui(xit(s))

for each i, where ui : R+ → R is continuous, strongly monotone, and strictly concave.
We also assume that for each i and j, there is a θji ≥ 0 such that ei =

∑J
j=1 θ

jidj for every
i. We assume, without loss of generality, that

∑I
i=1 θ

ji = 1 for every j. Then the aggregate
endowment process e is equal to

∑J
j=1 d

j . We assume that e is deterministic and constant
over time.

We start with characterizing the Pareto-efficient allocations in this economy. The following
lemma shows that all consumers’ consumptions are deterministic and constant over time at
every Pareto-efficient allocation.

Lemma 2 If a feasible contingent-commodity allocation (x1, x2, . . . , xI) is Pareto-efficient,
then xi is deterministic and constant over time for every i.

Proof of Lemma 2 For any feasible allocation (x1, x2, . . . , xI), define another allocation
(x̂1, x̂2, . . . , x̂I) by x̂it = x̄i for every i and t with probability one, where

x̄i =
T∑

t=0

S∑

s=1

δtP ({s})
1 + δ + · · ·+ δT

xit(s) ∈ R+.
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Then, for every i, x̂i is constant and deterministic. Also, (x̂1, x̂2, . . . , x̂I) is feasible because

∑

i

x̂it(s) =
∑

i

∑

t′

∑

s′

δt
′
P ({s′})

1 + δ + · · ·+ δT
xit′(s

′) =
∑

t′

∑

s′

δt
′
P ({s′})

1 + δ + · · ·+ δT

∑

i

xit′(s
′)

=
∑

t′

∑

s′

δt
′
P ({s′})

1 + δ + · · ·+ δT
et′(s′) = et(s),

where the last equality follows from the assumption that e is deterministic and constant over
time. Since ui is strictly concave,

Ui(xi) = (1+δ+· · ·+δT )
T∑

t=0

S∑

s=1

δtP ({s})
1 + δ + · · ·+ δT

ui(xit(s)) ≤ (1+δ+· · ·+δT )
T∑

t=0

δtui(x̄it) = Ui(x̂i),

where the inequality holds as a strict inequality unless x̂i = xi. Hence, (x̂1, x̂2, . . . , x̂I) is
Pareto-superior to (x1, x2, . . . , xI) unless xi = x̂i, that is, xi is deterministic and constant
over time, for every i. Therefore, if (x1, x2, . . . , xI) is Pareto efficient, then xi is constant and
deterministic for every i. ///

Next, we prove that the above assumptions are sufficient to guarantee that asset markets
are effectively complete.

Lemma 3 Asset markets are effectively complete.

Proof of Lemma 3 Let (x1, x2, . . . , xI) be a Pareto-efficient allocation. Then, by Lemma
2, there exists a ζi ∈ [0, 1] such that xi = ζie. Thus, xit−eit =

∑
j

(
ζi − θji) djt for every t ≥ 1.

By Lemma 1, this implies that asset markets are effectively complete. ///

The following theorem generalizes the analysis of Section 16.5 of LeRoy and Werner (2001)
to the case of multiple periods.

Theorem 4 Every equilibrium allocation is Pareto-efficient and all consumers’ consumption
are deterministic and constant at every equilibrium allocation.

5 Mutual fund theorem

In this section, we show that when all the consumers’ initial endowments are, in fact, endow-
ments in the traded assets, and the consumers have the same discount factor and the same
coefficient of constant relative risk aversion, then asset markets are effectively complete.

Formally, we assume that L = 1 and there are a δ > 0 and a γ > 0 such that

Ui(xi) = E

(
T∑

t=0

δtui
(
xit
)
)
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for all i, where u : R++ → R is defined by

u(z) =





ln z if γ = 1,
z1−γ − 1

1− γ otherwise,

for every z ∈ R++.6 This means that all consumers have constant relative risk aversion equal
to γ.

We also assume that for each i and j, there is a θji ≥ 0 such that ei =
∑J

j=1 θ
jidj for

every i. We assume, without loss of generality, that
∑I

i=1 θ
ji = 1 for every j. Then the

aggregate endowment process e is equal to
∑J

j=1 d
j . Unlike Section 4, we do not assume that

e is deterministic and constant over time.
The following lemma is known as the mutual fund theorem. It differs from its counterpart

in a static setting in that the mutual fund property holds not only across states but also over
time. Its validity follows from the assumption that all consumers have the same discount
factor. We omit the proof.

Lemma 4 If a feasible contingent-commodity allocation (x1, x2, . . . , xI) is Pareto-efficient,
then for every i, there exists a ζi ∈ (0, 1) such that xi = ζie.

Just as Lemma 3, we can prove that the above assumptions are sufficient to guarantee
that asset markets are effectively complete. We thus obtain the following theorem, which
generalizes the analysis of Section 16.7 of LeRoy and Werner (2001) to the case of multiple
periods.

Theorem 5 Every equilibrium allocation is Pareto-efficient. If (x1, x2, . . . , xI) is an equilib-
rium allocation, then for every i, there exists a ζi ∈ (0, 1) such that xi = ζie.

6 Sunspot irrelevance

In this section, we extend the sunspot-irrelevance theorem of Mas-Colell (1992) to the dynamic
setting.

Unlike the previous two sections, we consider the case in which the number L of consump-
tion goods may be greater than one. We assume that there is a δ > 0 such that

Ui(xi) = E

(
T∑

t=0

δtui
(
xit
)
)

6To be precise, Ui is then defined on L1
++ rather than L1

+, contrary to the assumption stated in Section 2.
But this pauses no need to modify our analysis, because the Pareto-efficient allocations that we look into in
conjunction with effective completeness are those which Pareto-dominate the equilibrium allocations; and they
are necessarily in some compact subset of L1

++. For a similar reason, we could extend our analysis to the case
where the slopes of the risk tolerance (the reciprocal of absolute risk aversion) of all consumers are constant
and equal, if we assume that consols (paying a deterministic and constant dividend from period 1 onwards)
are traded. The details of such an extension are stated in Section 16.7 of LeRoy and Werner (2001).

14



for each i, where ui : RL
+ → R is continuous, strongly monotone, and strictly concave.

We also assume that for each i, the endowment process ei is deterministic and constant
over time. Hence, the states are irrelevant to utility functions and initial endowments, and
thus called sunspot states. Of course, there is an asset market equilibrium of which the
contingent-commodity allocation is sunspot-free. Mas-Colell (1992) showed, in the case of
T = 1 and there is no consumption on period 0, that if there are not sufficiently many assets
available for trade, then there may be an asset market equilibrium of which the contingent-
commodity allocation depends on sunspots and its realizations are different from the sunspot-
free equilibrium allocations.

We start with characterizing the Pareto-efficient allocations in this economy. The following
lemma shows that they are sunspot-free. As it can be proved in the same way as Lemma 2,
we omit the proof.

Lemma 5 If a feasible contingent-commodity allocation (x1, x2, . . . , xI) is Pareto-efficient,
then xi is deterministic and constant over time for every i.

Next, we show that asset markets are effectively complete if for each of the L consumption
goods, there is a “consol,” which always pays one unit of the good over the entire time span.
Since the number L of consumption goods may well be less than the number of the events
that can arise in the subsequent period after some event (except for those obtained at on the
terminal period), these effectively complete asset markets may not be complete.

Lemma 6 Asset markets are effectively complete if for every good ` there is an asset j such
that

djt = (0, . . . , 0, 1︸︷︷︸
`−th

, 0, . . . , 0) = (`-th unit vector) ∈ RL

with probability one, for every t ≥ 1.

Proof of Lemma 6 If (x1, x2, . . . , xI) is an efficient allocation, then, by Lemma 5, for each
i there exists a zi ∈ RL such that xit − eit = zi with probability one for every t ≥ 1. By
assumption, for every i, there is a portfolio θi ∈ RJ such that zi =

∑
j θ

jidsjt with probability
one, for every t ≥ 1. Thus

∑
j θ

jidjt = xit − eit for every t ≥ 1. By Lemma 1, this implies that
asset markets are effectively complete. ///

Under the assumption of Lemma 5, asset markets are effectively complete and, by Theorem
2, the equilibrium contingent-commodity allocations are Pareto-efficient and, by Lemma 6,
the consumptions are deterministic and constant over time. We have thereby extended Mas-
Colell’s (1992) theorem to the dynamic setting.

Theorem 6 If for every good ` there is an asset j such that dsjt is equal to the `-th unit vector
with probability one for every t ≥ 1, then every equilibrium allocation is Pareto-efficient and
each consumer’s consumptions are deterministic and constant over time.
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We have mentioned that if the number of assets is less than the number of the events that
can arise in the subsequent period after some event, then asset markets must necessarily be
incomplete but the equilibrium allocations are Pareto-efficient. It may even be the case that
these assets turn out to be redundant under the equilibrium prices, rendering asset markets
incomplete regardless of whether J is larger or smaller than the number of the events that
can arise in the subsequent period, while retaining the Pareto efficiency of the equilibrium
allocations.

To see this point more formally, assume that T = 1 and for every j ≤ L, the j-th asset pays
out one unit of good j with probability one, and that the collection of a feasible contingent-
commodity allocation (x1, x2, . . . , xI), a feasible allocation (y1, y2, . . . , yI) of trading plans,
an asset price process q, and a spot price process p is an asset market equilibrium. Then
(x1, x2, . . . , xI) is Pareto-efficient and xi is deterministic and constant over time for every i.
Define another spot price process p̂ = (p̂0, p̂1) by letting p̂0 = p0 and p̂1 coincide with the first
L coordinates of q0 with probability one.7 Then p̂1 is sunspot-free. Define another feasible
allocation (ŷ1, ŷ2, . . . , ŷI) of trading plans by letting the first L coordinates of ŷi0 coincide with
xi1 − ei1 (which is sunspot-free) and the remaining J − L coordinates equal to zero. Then the
collection of (x1, x2, . . . , xI), (ŷ1, ŷ2, . . . , ŷI), q, and p̂ is an asset market equilibrium.8 This
is because every sunspot-free consumption plan that can be attained under (q, p) can also be
attained under (q, p̂), and vice versa. In this latter equilibrium, the contingent-commodity
allocation is the same as in the original equilibrium, but all but one assets are redundant,
because the p̂1·dj1 are sunspot-free (that is, all assets are riskless bonds). This implies that asset
markets are incomplete as long as S ≥ 2, but the equilibrium allocation is Pareto-efficient.

7 No-retrade theorem

Our last application of effectively complete markets is the no-retrade theorem of Judd, Kubler,
and Schmedders (2003) and Kubler and Schmedders (2003).

We consider a Markov environment in which there are M states, m = 1, 2, . . . ,M , on each
period and a single consumption good in each state. Let m̄ ∈ {1, 2, . . . ,M} be the state on
period 0, then the state space over the entire history is given by S = {m̄} ×MT .9

Define χ : S × {0, 1, . . . , T} →M by χ(s, t) = st, where s = (s0, s1, . . . , sT ) ∈ S. Write χt
for χ(·, t) : S →M . Then χt maps each entire history to the state that arises on period t along
the history. The filtration (F1,F2, . . . ,FT ) is defined in such a way that for every t, Ft is
generated by the mapping (χ0, χ1, . . . , χt) : S →M t. That is, for every s = (s0, s1, . . . , sT ) ∈
S and s′ = (s′0, s

′
1, . . . , s

′
T ) ∈ S, s and s′ belong to the same element of the partition Gt

corresponding to Ft if and only if st′ = s′t′ for every t′ ≤ t.
7If, for example, there exists an i such that xi0 ∈ RL

++ and ui is differentiable at xi0, then there exists a
λ ∈ X1

++ such that p̂1 = λ1p1 and, as the subsequent argument will show, all but one assets are redundant
even under p.

8If T were greater than one, then q would need to be multiplied by an appropriate state-price deflator.
9There is a slight abuse of notation, as S is a set in this section, while it used to be a positive integer up to

the previous section. Little confusion will arise from this abuse of notation.
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Assume that all consumers have the same discount factor δ > 0 and have state-dependent
expected utility functions

Ui(xi) = E

(
T∑

t=0

δtui(xit, χt)

)
=

∑

(s,t)∈S×{0,1,...,T}
δtP ({s})ui(xit(s), st),

where ui : R+ × {1, 2, . . . ,M} → R and xi = (xi0, x
i
1, . . . , x

i
T ).

Assume that, for the initial endowment process ei = (ei0, e
i
1, . . . , e

i
T ) of each consumer i,

each eit depends only on st (and not on t), that is, there is a gi : {1, 2, . . . ,M} → R such that
ei = gi(χ). Assume also that, for the dividend process dj = (dj0, d

j
1, . . . , d

j
T ) of each asset j,

each djt depends only on st (and not on t), that is, there is an hi : {1, 2, . . . ,M} → R such
that dj = hj(χ).

This economy is in the Markov environment, as there are M states that recur over time
and the utility functions, initial endowments, and dividend payouts depend only on the state
on the period but not on the state on any earlier period. But, unlike the model of Judd,
Kubler, and Schmedders (2003) and Kubler and Schmedders (2003), the probability that
state m occurs on period t may depend not only on the state that occurred on period t − 1
but also on some earlier periods. Note also that we are assuming that there are only finitely
many periods, while they assumed that there are infinitely many periods. Finally, all assets in
our model are long lived (traded from period 0 onwards and dividends paid out until period
T ), while some assets in their model may be short-lived (traded just once and dividends paid
out only on the next period). We exclude short-lived assets from our model for the sake of
simplicity of exposition.

Just as in the previous sections, we start the analysis of the model with characterizing the
Pareto-efficient allocations.

Lemma 7 If an allocation (x1, x2, . . . , xI) is Pareto-efficient, then for every i, there exists
an fi : {1, 2, . . . ,M} → R such that xi − ei = fi(χ).

Proof of Lemma 7 Let (x1, x2, . . . , xI) be a feasible contingent-commodity allocation. For
each m, define rm =

∑
(s,t)∈χ−1(m) δ

tP ({s}). Then, for each m and i, define

x̄mi =
∑

(s,t)∈χ−1(m)

δtP ({s})
rm

xit(s).

Then define x̂i =
(
x̂i0, x̂

i
1, . . . , x̂

i
T

)
by letting x̂it(s) = x̄χ(s,t)i for every (s, t). Then the allocation

17



(x̂1, x̂2, . . . , x̂I) is feasible because

I∑

i=1

x̂i(s) =
I∑

i=1

x̄χ(s,t)i =
I∑

i=1

∑

(s′,t′)∈χ−1(χ(s,t))

δt
′
P ({s′})
rχ(s,t)

xit′(s
′)

=
∑

(s′,t′)∈χ−1(χ(s,t))

δt
′
P ({s′})
rχ(s,t)

I∑

i=1

xit′(s
′)

=
∑

(s′,t′)∈χ−1(χ(s,t))

δt
′
P ({s′})
rχ(s,t)

I∑

i=1

eit′(s
′)

=
∑

(s′,t′)∈χ−1(χ(s,t))

δt
′
P ({s′})
rχ(s,t)

I∑

i=1

gi(χ(s, t))

=
I∑

i=1

gi(χ(s, t)) =
I∑

i=1

ei(s).

Since ui(·,m) is strictly concave,

Ui(xi) =
M∑

m=1

rm
∑

(s,t)∈χ−1(m)

δtP ({s})
rm

ui
(
xit(s),m

) ≤
M∑

m=1

rm
∑

(s,t)∈χ−1(m)

ui
(
x̂it(s),m

)
= Ui(x̂i),

where the weak inequality holds as a strict inequality unless xi = x̂i, that is, xit(s) =
xit′(s

′) whenever χ(s, t) = χ(s′, t′) for every i. Thus (x̂1, x̂2, . . . , x̂I) is Pareto-superior to
(x1, x2, . . . , xI) unless xit(s) = xit′(s

′) whenever χ(s, t) = χ(s′, t′) for every i. Therefore, if
(x1, x2, . . . , xI) is Pareto-efficient, then xit(s) = xit′(s

′) whenever χ(s, t) = χ(s′, t′) for every i.
This means that for every i, there is a f̂i : {1, 2, . . . ,M} → R such that xi = f̂i(χ). The proof
is completed by taking fi = f̂i − gi. ///

To state a sufficient condition for effectively complete asset markets, write

H =




h1(1) · · · hJ(1)
...

. . .
...

h1(M) · · · hJ(M)


 ∈ RM×J .

Lemma 8 If rankH = M , then asset markets are effectively complete .

Note that even if rankH = M , asset markets need not be complete. A sufficient condition
for completeness, which involves asset prices, will be given after the proof.

Proof of Lemma 8 Suppose that (x1, x2, . . . , xI) is a Pareto-efficient contingent-commodity
allocation. By Lemma 7, for every i, there exists an fi : {1, 2, . . . ,M} → R such that
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xi − ei = fi(χ). Write

vi =




fi(1)
...

fi(M)


 ∈ RM ,

Since rankH = M , there exists a bi ∈ RJ such that vi = Hbi. Then

xit − eit = fi(χt) = Hbi =
∑

j

bidjt .

By Lemma 1, this implies that asset markets are effectively complete. ///

To state the no-retrade theorem, we need the following notation. Let q be an equilibrium
asset price process. Since it is adapted to the filtration (F0,F1, . . . ,FT ), qjt (s) = qjt (s

′)
whenever st′ = s′t′ for every t′ ≤ t. Thus there exists a kj :

⋃T
τ=0({m̄} ×M τ )→ R such that

qjt (s) = kj(χ0(s), χ1(s), . . . , χt(s)) for every (s, t). For each t and each (s0, s1, . . . , st−1), define
K(s0, s1, . . . , st−1) ∈ RM×J as




h1(1) + k1(s0, s1, . . . , st−1, 1) · · · hJ(1) + kJ(s0, s1, . . . , st−1, 1)
...

. . .
...

h1(M) + k1(s0, s1, . . . , st−1,M) · · · hJ(M) + kJ(s0, s1, . . . , st−1,M)


 .

While the matrix H represents the dividends of the J assets on the next period, the matrix
K(s0, s1, . . . , st−1) represents the total returns to the J assets, inclusive of their prices on the
next period. Asset markets are complete if and only if rankK(s0, s1, . . . , st−1) = M for every
t and (s0, s1, . . . , st−1). In the model of Judd, Kubler, and Schmedders (2003) and Kubler and
Schmedders (2003), since there are infinitely many periods and the transition probabilities
between two states are time-invariant, the asset prices are also time-invariant functions of the
M states, and rankK(s0, s1, . . . , st−1) = rankH = M for every t and (s0, s1, . . . , st−1). That
is, if rankH = M , then asset markets are complete. In contrast, since asset prices need not
be time-invariant functions of the M states in our model, the condition that rankH = M

does not imply that asset markets are complete. It is for this reason that we need to assume
that rankK(s0, s1, . . . , st−1) = M for every t and (s0, s1, . . . , st−1) in the second part of our
no-retrade theorem.

Theorem 7 (No-Retrade Theorem) Assume that rankH = M . If the collection of a
feasible contingent-commodity allocation (x1, x2, . . . , xI), a feasible allocation (y1, y2, . . . , yI)
of trading plans, and an asset price process q is an asset market equilibrium, then there exists
a feasible allocation (ŷ1, ŷ2, . . . , ŷI) of trading plans such that yi is deterministic and constant
over time for every i, and the collection of (x1, x2, . . . , xI), (ŷ1, ŷ2, . . . , ŷI), and q is an asset
market equilibrium. If, in addition, J = M and rankK(s0, s1, . . . , st−1) = M for every t and
every (s0, s1, . . . , st−1), then yi = ŷi and hence yi is deterministic and constant over time for
every i.
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This theorem states that if asset markets are effectively complete, then any equilibrium
contingent-commodity allocation can be attained by letting all consumers trade assets once
and for all on period 0, and that if, in addition, markets are complete and the J assets are
not redundant, then all consumers do in fact trade assets once and for all on period 0 at
equilibrium. Since the equilibrium asset price processes need not be time-invariant, the proof
of Theorem 7, which relies on effective completeness, is different from that of Judd, Kubler,
and Schmedders (2003) and Kubler and Schmedders (2003), which relies on the stationary
dynamic programming technique.

Proof of Theorem 7 Let the collection of a feasible contingent-commodity allocation
(x1, x2, . . . , xI), a feasible allocation (y1, y2, . . . , yI) of trading plans, and an asset price process
q be an asset market equilibrium. By Lemma 8 and Theorem 2, (x1, x2, . . . , xI) is Pareto-
efficient. For each i ≥ 2, let bi be as in Lemma 8, let b1 = −∑i≥2 b

i, and, for each i ≥ 1,
define yi ∈ XJ by letting yit = bi with probability one for every t ≥ 0. To show that the
collection of (x1, x2, . . . , xI), (ŷ1, ŷ2, . . . , ŷI), and q is an asset market equilibrium, it suffices
to prove that xi0−ei0 ≤ −

∑
j q

j
0ŷ
ji
0 for every i. Indeed, there is a λ ∈ L1

++ such that (6) holds.
Since dy

i
= xi − ei = dŷ

i
,

∑

j

qj0y
ji
0 =

1
λt
E

(
T∑

t=1

λt
λ0
dy

i

t

)
= E

(
T∑

t=1

λt
λ0
dŷ

i

t

)
=
∑

j

qj0ŷ
ji
0 .

Since xi0 − ei0 ≤ −
∑

j q
j
0y
ji
0 , xi0 − ei0 ≤ −

∑
j q

j
0ŷ
ji
0 . This completes the proof of the first part.

As for the second part, suppose, in addition, that J = M and rankK(s0, s1, . . . , st−1) = M

for every t and every (s0, s1, . . . , st−1). We prove that yi = ŷi by a backward induction
argument. For each t and s = (s0, s1, . . . , sT ), write

q(s0, s1, . . . , st) =




q1
t (s)
...

qJt (s)


 ∈ RJ ,

yi(s0, s1, . . . , st) =




y1i
t (s)

...
yJit (s)


 ∈ RJ ,

ri(s0, s1, . . . , st−1) =




q(s0, s1, . . . , st−1, 1) · yi(s0, s1, . . . , st−1, 1)
...

q(s0, s1, . . . , st−1,M) · yi(s0, s1, . . . , st−1,M)


 ∈ RM .

We define ŷi(s0, s1, . . . , st) and r̂i(s0, s1, . . . , st) analogously for ŷi.
Since qjT = 0 for every j (because, otherwise, there would be an arbitrage opportunity),

(4) with t = T can be rewritten as vi = HyiT−1 = HŷiT−1. Since rankH = M = J , this means
that yiT−1 = ŷiT−1. As an induction hypothesis, let t ≤ T − 2 and suppose that yit+1 = ŷit+1.

20



Then (4) can be written as

vi =K(s0, s1, . . . , st−1)yi(s0, s1, . . . , st−1)− ri(s0, s1, . . . , st),

vi =K(s0, s1, . . . , st−1)ŷi(s0, s1, . . . , st−1)− r̂i(s0, s1, . . . , st),

which is equivalent to

K(s0, s1, . . . , st−1)yi(s0, s1, . . . , st−1) = vi + ri(s0, s1, . . . , st),

K(s0, s1, . . . , st−1)ŷi(s0, s1, . . . , st−1) = vi + r̂i(s0, s1, . . . , st).

Since K(s0, s1, . . . , st−1) is an invertible M×M matrix and ri(s0, s1, . . . , st) = r̂i(s0, s1, . . . , st)
by the induction hypothesis, yi(s0, s1, . . . , st−1) = ŷi(s0, s1, . . . , st−1). Thus yit = ŷit. ///

Since the theorem holds even when rankK(s0, s1, . . . , st−1) < M as long as rankH = M ,
the theorem shows that effective complete asset markets may not be complete.

8 Conclusion

We have proposed a definition of effectively complete asset markets in a model with multiple
goods and multiple periods, and established the first welfare theorem in effectively complete
asset markets. We have then given four applications of the first welfare theorem, the Pareto
efficiency of equilibrium allocations with no aggregate risk, the mutual fund theorem, the
sunspot irrelevance theorem, and the no-retrade theorem. The lesson to be learned from this
exercise is that the equilibrium allocations may well be Pareto-efficient even in incomplete asset
markets, and effective completeness serves as a sufficient (and, in fact, necessary) condition
for this to occur.

The usefulness of the concept of effective completeness hinges on to what extent it is
applicable. We have presented four distinct classes of economies with effectively complete
asset markets. But in all of these classes, asset markets are effectively complete in a very
narrow sense, which is that every Pareto-efficient allocation can be attained after the first
round of asset trades, without using asset or spot markets in the subsequent rounds. We
should, therefore, find other classes of economies with effectively complete asset markets in
which multiple rounds of trade are needed to attain Pareto-efficient allocations, although it is,
in general, difficult to establish effective completeness involving sequential trades, because the
attainability of transfers of contingent commodities through asset trading depends on asset
and spot prices in the subsequent rounds.
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