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Abstract

In a continuous-time equilibrium model of heterogeneous consumers, we

formulate and prove the statement that the more heterogeneous the con-

sumers are in their impatience, the more dynamically consistent the repre-

sentative consumer is. We apply this result to interest rate models, and,

in particular, accommodate heterogeneous impatience in the model of Cox,

Ingersoll, and Ross (1985) to come up with a new form of short-rate pro-

cesses.
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1 Introduction

1.1 Background and motivation

Asset transactions are often motivated by the heterogeneity in consumers’ char-

acteristics. More risk-averse consumers unload their risk exposures and less risk-

averse ones take them over with premiums; and more patient consumers save more

to enjoy higher consumptions in the future and impatient ones borrow to enjoy

higher consumption immediately. The raison d’être of asset markets is precisely

to cater for diverse needs for asset transactions by heterogeneous consumers.

Heterogeneity in consumers’ characteristics have implications not only on risk

and intertemporal allocations but also on asset prices. The impact on asset prices

can probably be best understood by constructing the representative consumer.

The representative consumer is a fictitious consumer whose marginal utility pro-

cess, evaluated along the average consumption process, is a state price deflator.

For example, the representative consumer of individual consumers having utility

functions of constant and unequal relative risk aversion has a utility function of

strictly decreasing relative risk aversion (Franke, Stapleton, and Subrahmanyam

(1999) and Hara, Huang and Kuzmics (2007)); and the representative consumer

of individual consumers having constant but unequal subjective discount rates has

discount rates that are a strictly decreasing function of time (Weitzman (2001),

Gollier and Zeckhauser (2005), and Lengwiler (2005)). The consequences of these

are that the derivative assets with convex payoff functions is underestimated if the

coefficients of constant relative risk aversion are erroneously assumed to be equal

(Franke, Stapleton, and Subrahmanyam (1999) and Hara, Huang, and Kuzmics

(2007)); and that the term structure of interest rates is more downward sloping

in the case of heterogeneous subjective discount rates than in the case of homoge-

neous subjective discount rates (Lengwiler (2005)).

Weitzman (2001), Gollier and Zeckhauser (2005), and Lengwiler (2005) showed

that the heterogeneity in individual consumers’ subjective discount rates gives rise
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to a decreasingly impatient representative consumer, that is, the representative

consumer’s discount rate is decreasing over time. But, they did not investigate

whether a more heterogeneous economy give rise to a more decreasingly impatient

representative consumer. The purpose of this paper is to give a precise formulation

to the statement that the more heterogeneous the subjective discount rates of

the individual consumers are, the more decreasingly impatient the representative

consumer is. Doing so will enable us to extend the line of thoughts pursued

especially by Gollier and Zeckhauser (2005) to fill in the spectrum of various

degrees of individual consumers’ heterogeneous impatience and the corresponding

representative consumer’s decreasing impatience.

1.2 Overview of the results of this paper

To formalize the idea that the more heterogeneous individual consumers’ impa-

tience leads to the more decreasingly impatient representative consumer, we need

to give a notion of the “more decreasingly impatient than” relation and the “more

heterogeneous than” relation, between two heterogeneous economies. For the for-

mer, we use the notion by Prelec (2004), which has the behavioral implication

that a more decreasingly impatient consumer has preference reversal between two

alternatives whenever the less decreasing impatient consumer does.1

The natural candidate for the latter is the mean-preserving spread (the second-

order stochastic dominance with equal mean). That is, we might say that the indi-

vidual consumers’ impatience is more heterogeneous in an economy than in another

if the (approximately wealth-weighted) distribution of the individual consumers’

subjective discount rates of an economy is a mean-preserving spread of that of the

other.2 As we will give an example in Section 6.3, however, the mean-preserving

spread does not always lead to the more decreasingly impatient representative con-

sumer. The reason can be intuitively explained with the logic that can be traced

1Since, as Lengwiler (2005, Section IV) pointed out, the representative consumer is a fictitious
agent, who does not autonomously choose asset portfolios but is used only to derive equilibrium
state prices, this behavioral implication is not applicable to the representative consumer. The
individual consumers in our model are, on the other hand, all constantly impatient and, thus,
have no preference reversal.

2Since the representative consumer is defined so that his marginal utility coincides with the
state-price density, the relevant distribution of the individual consumers’ subjective discount
rates is not the unweighted one, but the one weighted by their wealth. In the introduction and
the subsequent analysis, we, in fact, consider approximately wealth-weighted distributions, of
which the precise definition is given by (7).
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back to Becker (1980) and Rader (1981, Section 6): As time goes to infinity, the

most patient individual consumer’s share in the average consumption and wealth

converges to one. Moreover, the convergence of his share is faster, the more spread

the individual consumers’ discount rates are. Thus, if an economy consists, at the

initial time 0, of more heterogeneous individual consumers, then the representa-

tive consumer is, for a while, more decreasingly impatient; but as time elapses, the

most patient consumer’s consumption and wealth share may increase faster, and

the distribution of discount rates, weighted by the wealth shares on intermediate

times, may become less heterogeneous, resulting in a less decreasingly impatient

representative consumer. That is, the mean-preserving spread cannot rule that

possibility that the ranking of decreasing impatience is switched as time elapses.

It is, therefore, necessary to employ a more stringent mathematical definition for

the more-heterogeneously-impatient-than relation to prevent the ranking of het-

erogeneity from switching as time elapses, even when the heterogeneity is assessed

in terms of the distribution of discount rates, weighted by the consumers’ wealth

on any intermediate period.

This more stringent mathematical for the more-heterogeneously-impatient-

than relation can be explained as follows. Since any distribution of individual

consumers’ discount rates is concentrated on the non-negative part R+ of the real

line, we can define its cumulant-generating function, the logarithm of its moment-

generating function, on the non-positive part −R+. Then our main result (Theo-

rem 2 in 5) shows that the more convex the cumulant-generating function of the

distribution of discount rate is, the more decreasingly impatient the representative

consumer is, and the converse also holds.

To understand what the convexity assumption means, recall that the convexity

of a twice differentiable function is measured by its curvatures, which are the ratios

of the second derivatives to the first derivatives. It is well known that the first and

second derivatives of the cumulant-generating function at any s ≤ 0 coincide with

the mean and variance of the probability measure of which the density function

with respect to the distribution of discount rates is proportional to the exponential

function q 7→ exp(sq). Hence the curvature of the cumulant-generating function

at s is the ratio of the variance to the mean of the probability measure with a

density proportional to q 7→ exp(sq). The curvature at 0 is equal to the ratio

of the variance to the mean of the distribution. As such, it merely measures the

heterogeneity of the discount rates at time 0. But, as we discussed in the preceding
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paragraph, we wish to prevent the ranking of decreasing impatience from switching

at any future point in time. To do so, we need to impose the curvature condition

at any future point in time. The resulting condition is that the curvature of the

cumulant-generating function is larger for one distribution than for the other, at

every s ≤ 0, or, equivalently, the cumulant-generating function of one distribution

is more convex than that of the other.

In Section 7, we apply the main result, and its weaker variant to be given in

Section 5, to the analysis of the term structure of interest rates. Our approach is

rather unique. While the literature on the term structure of interest rates typically

looks into the conditions under which, say, the yield curve of an economy is flat,

upward sloping, or downward sloping, we take up two economies having a common

average (aggregate) consumption process but differing heterogeneity in individual

consumers’ impatience and ask whether, say, the yield curve of one economy is

more upward or downward sloping than that of the other. As for the short-

rate processes, we show that the most commonly used structures are invariant

under changes in the heterogeneity in individual consumers’ impatience. More

specifically, we prove that if the short-rate process of one economy is Gaussian or

has the affine structure, then that of the other economy is also Gaussian or has the

affine structure. We extend the short-rate process in the model of Cox, Ingersoll,

and Ross (1985) to the case in which the representative consumers has generalized

hyperbolic discounting of Lowenstein and Prelec (1992). Although the resulting

short-rate process still has the affine structure, its mean, to which the process is

reverting, turns out to be time-varying.

1.3 Related literature

Lengwiler (2005) considered the term structure of interest rates in a determin-

istic model of discrete time of finite span populated by finitely many consumers

sharing the logarithmic utility function and the same wealth level. He evaluated

the impact of heterogeneous impatience on the term structure of interest rates by

comparing such a heterogeneous economy with a homogeneous economy, rather

than with another, less heterogeneous one. In addition, the benchmark homoge-

neous economy he compared with the given heterogeneous economy is the one in

which all consumers have the discount factor, not the discount rate as we will do

in this paper, that is equal to the mean of the individual consumers’ counterparts.

The risk-free rate (short rate) at the initial date (time 0) of the benchmark ho-
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mogeneous economy is equal to that of the original heterogeneous economy in our

benchmarking (where the discount rate of the homogeneous economy is equal to

the mean discount rate of the heterogeneous economy), while the former is lower

than the latter in his benchmarking (where the discount factor of the homogeneous

economy is equal to the mean discount factor of the heterogeneous economy), due

to Jensen’s inequality.

In a series of works, Rohde (2009, 2010, 2018) introduced a variety of measures

of decreasing impatience, some of which were used to explain experimental finding.

We will comapre Prelec’s measure of decreasing impatience, which we employ

throughout this paper, with these measures in detail towards the ends of Section

4 and, also, Section 5.

In the literature, there have been two important areas of research that has

attracted attention to decreasing impatience. One is the possibility of aggregating

heterogeneous impatience, in the context of social choice, into a single preference

while respecting unanimity and time consistency without giving rise to dictator-

ship. The other is the impact of time inconsistency and decreasing impatience on

the solution to an optimal stopping-time problem. Although these problems are

not addressed in this paper, let us mention some contributions on these questions

in turn to illustrate the analytical affinity of this paper with theirs.

On the possibility of aggregating heterogeneous impatience, Zuber (2011) showed,

in a discrete-time model in which a social welfare function is defined on the set

of profiles of individual consumption processes and each individual agents’ utility

functions are defined on the set of temporal lotteries in the sense of Epstein and

Zin (1989), that the social welfare function satisfies unanimity, time consistency,

and stationarity only if the individual agents have constant and common discount

factor. In cases in which a common consumption process is shared among the

individual agents, Jackson and Yariv (2014) showed that if their utility functions

are aggregated into a social welfare function in a utilitarian manner, then the as-

sociated discount factor function must necessarily exhibit decreasing impatience

and, thus, time inconsistency. Jackson and Yariv (2015) showed further that the

time inconsistency would still prevail, were the dictatorship to be avoided, when

the individual agents’ utility functions are aggregated, in any way that respects

unanimity, into a time-additive social welfare function with the multiplicative form

of discount factors and instantaneous utilities, or even when the social ranking is,

at the outset, not assumed to be representable by such a social welfare function.
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As the representative consumer in this paper has a time-additive, multiplica-

tively separable utility function with decreasing impatience, it does in no way con-

tradict their results. But it cannot really be regarded as representing the social

welfare function in these papers for the following reasons. First, at the conceptual

level, the aggregation is done in our paper through markets, in the sense that

the equilibrium prices determine the utility weights based on which the utilitarian

welfare maximization problem is defined and solved.3 As such, the representative

consumer’s discount factor function is merely a reflection of the state price density

or stochastic discount factor, with no deliberate respect for unanimity or time con-

sistency. Moreover, the representative consumer in this paper consumes the sum

of what the individual consumers consume, and the individual consumptions have

one-to-one relations to the aggregate consumption via the solution to the utilitar-

ian welfare maximization problem.4 As such, a change in aggregate consumptions

has heterogeneous impacts on individual consumptions.

Chambers and Echenique (2018a) took up a similar situation, where heteroge-

nous agents are interpreted as experts whose task is to evaluate the intergenera-

tional welfare consequences of long-run projects. They investigated under what

axioms the social ranking can be represented by a function of a form that are

reminiscent of the maximin utility of Gilboa and Schmeidler (1989), where there

is a set Σ of probability distributions on a set of discount factors that agents might

have (a subset of an open unit interval (0, 1)) and the function attaches to each

intergenerational utility stream the minimum of the values of the weighted util-

itarian social welfare based on the probability distributions in Σ. Such a social

ranking embodies the criterion that they referred to as multi-utilitarianism, and

necessarily violates time-consistency. The discount factor function in our setting,

defined by (4), can be considered as a consequence of aggregating heterogeneous

impatience, though without axiomatization but through asset markets, is just be-

tween the two polar cases, utilitarian and maximin, of their multi-utilitarianism.

Chambers and Echenique (2018b) took up the same setting but investigated un-

der what axioms the social ranking on the set of intergenerational utility streams

represents the unanimous agreement of agents with constant, but no common,

3The function λ and the maximization problem (2) in Section 2.2.
4A consequence of this is that when speaking of utilitarian aggregation, Jackson and Yariv

(2014, 2015) took a weighted sum of utility functions, while we take a weighted sum of the
Legendre transforms of utility functions. Karatzas and Shreve (1998, Section 4.5) explain the
use of Legendre transforms in equilibrium analysis.

7



discount rates. They also obtained the dual expression of the utility streams that

can be unanimously preferred to a given one. The expression is derived from the

inversion formula of Bernstein’s Theorem, which we will mention in Section 6.2.

Feng and Ke (2018) avoided the equivalence between the combination of time

consistency and unanimity on the one hand and dictatorship on the other, by

introducing altruism into individual agents’ utility functions. Specifically, they

assumed that each individual agent lives for just one period but cares about the

future agents’ welfare, while discounting it by a constant discount rate. Thus, for

every period t, the consumption of the agent on period t enters into all agents’

utility functions up to and including period t. Because of this altruism, the (con-

stant) discount factor embedded in a social ranking satisfying time consistency

and unanimity may well be (and, under some conditions, must be) higher than all

individual agents’ counterparts for the social ranking to respect unanimity, which

would not be possible in the setting of Jackson and Yariv (2014, 2015).

As for the impact of time inconsistency and decreasing impatience on stopping

time, Quah and Strulovici (2014) studied the impact of the decision maker’s impa-

tience on his optimal choice in a stopping time problem. They defined a decision

maker’s discount factor function as at least as patient as another if they have the

monotone likelihood ratio property, and proved that under general condition that

admit stochastic terminal payoffs, the possibility of controlling intermediate flow

payoffs, stochastic discount factors, and decreasing impatience, it is optimal for

a more patient decision maker to enjoy higher intermediate flow payoffs and ter-

minate the process later, thereby attaining a higher value function. They applied

this result (in Section 5 of their paper) to a decision maker who exhibits decreas-

ing impatience. The application relies partly on the assumption of decreasing

impatience, but their focus is on the impact of the degree of impatience itself on

the optimal choice of a single decision maker’s problem, while our focus is on the

impact of the heterogeneity of individual consumers’ impatience on the degree of

decreasing impatience of the representative consumer.

Ebert, Wei, and Zhou (2018) studied how the increase in the heterogeneity of

individual consumers’ impatience affect on the collective choice in the stopping-

time problem. To measure the heterogeneity, they a generalized version of eventual

dominance of Fishburn (1980, Section 4) and showed that the more heterogeneous

the individual consumers’ impatience, the later the group chooses to stop in the

stopping time problem. We will compare Fishburn’s measure of heterogeneity with
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our measure of heterogeneity towards the end of Section 3.

1.4 Organization of this paper

The setup and preliminary results are presented in Section 2. The measure of

heterogeneity of impatience is introduced in Section 3. The more-decreasingly-

impatient-than relation of Prelec (2004) is reviewed in Section 4. The main results

are stated in Section 5. Parameterized examples of the main results are given in

Sections 6. Applications to the term structure of interest rates are explored in

Section 7. The results are summarized and a future research topic is suggested

in Section 8. Appendix A lays out an equilibrium foundation of our approach of

comparing two economies with a common average endowment process but differing

heterogeneity of individual consumers’ impatience. Appendix B gathers proofs.

2 Setup and Preliminary Results

In this section, we define an economy as a collection of individual consumers with

heterogeneous discount rates and derive the discount rates of the representative

consumer of the economy.

2.1 Economy

The economy is subject to uncertainty, which is represented by a probability space

(Ω,F , P ). The time span is R+ = [0,∞), which is of continuous time. Its length

is assumed to be infinite, but could be taken to be finite, such as [0, T ] with

T <∞, as the subsequent result does not depend on the length of time span. The

gradual information revelation is represented by a filtration (F (t))t∈R+
. There is

only one type of good on each time and state.

We allow the number of consumers present in the economy to be finite or

infinite. Formally, we let (I,I , ι) be a probability space of (names of) consumers.

It is customary to take I be the unit interval (0, 1), I be the σ-field of Lebesgue

measurable subsets of I, and ι be (the restriction of) the Lebesgue measure on I ,

and, then, the consumption sector consists of infinitely many consumers, each of

whom is negligible in size relative to the total population of the economy. For each

J ∈ I , ι(J) is the proportion of consumers in J relative to the entire consumption

sector.
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We assume that the consumers have time-additive expected utility functions

over consumption processes, which exhibit constant and equal relative risk aver-

sion, and constant but possibly unequal discount rates. Formally, let γ > 0 and

define u : R++ → R by

u(x) =

 lnx if γ = 1,
xγ−1 − 1

γ − 1
otherwise,

for every x ∈ R++. Let ρ : I → R++ specify the individual consumers’ discount

rates. Then the utility function Ui of consumer i over consumption processes is

defined by

Ui(ci) = E

(∫ ∞

0

exp(−ρ(i)t)u(ci(t)) dt
)
,

where ci = (ci(t))t∈R+
.5 Although the assumption of constant and equal relative

risk aversion is quite stringent, there is a good reason to restrict our attention to

this case. In fact, Hara (2009, Corollary 2) showed that if consumers had unequal

coefficients of constant relative risk aversion, then the representative consumer’s

discount factor function, to be specified below, would not be well defined.

For each i ∈ I, let ei be the endowment process of consumer i, which is an

R+-valued adapted process. The average (mean) endowment process,
∫
I
ei dι(i),

is denoted by e.

2.2 Arrow-Debreu equilibrium

A state-price deflator is anR++-valued adapted process. The utility maximization

problem of consumer i under a state-price deflator π is

max
c

Ui(ci)

subject to E

(∫ ∞

0

π(t)(c(t)− ei(t)) dt

)
= 0.

(1)

We say that a state price deflator π and an allocation (ci)i∈I of consumption

processes constitute an Arrow-Debreu equilibrium if
∫
I
ci dι(i) = e and for every i ∈

5This and other integrals in the subsequent analysis need not be well defined without addi-
tional assumptions on ci and other stochastic processes. But the subsequent argument depends
only on the first-order conditions of (utility or social welfare) maximization problems, which
must necessarily hold whenever there is a solution to the problem under consideration. We shall
therefore be implicit about these additional assumptions.
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I, ci is a solution to the utility maximization problem (1) of i under the state-price

deflator π. Although we shall not elaborate on this point, it is well known that the

Arrow-Debreu equilibrium allocations coincide with the equilibrium allocations in

complete asset markets.

2.3 Representative consumer

By Proposition 10.C of Duffie (2001), for each Arrow-Debreu equilibrium, there is

a λ : I → R++ such that the solution to the social welfare maximization problem

over allocations of the average consumption process c,

max
(ci)i∈I

∫
I

λ(i)Ui (ci) dι(i),

subject to

∫
I

ci dι(i) = c.
(2)

coincides with the equilibrium allocation when c = e.6 It was shown in Hara

(2008, Section 2) that the value function of this maximization problem, which is

the representative consumer’s utility function, is given by

U(c) = E

(∫ ∞

0

f(t)u(c(t)) dt

)
. (3)

where

f(t) =

(∫
I

(λ(i) exp(−ρ(i)t))1/γ dι(i)

)γ

. (4)

Note that the representative consumer too has constant relative risk aversion equal

to γ. The function d : R+ → R is the representative consumer’s discount factor

function.7 In order for U to be well defined, it is necessary and sufficient that

d(0) < ∞, because exp(−ρ(i)t) ≤ 1 for every i ∈ I and every t ∈ R+. This is

equivalent to saying that the function i 7→ (λ(i))1/γ is integrable with respect to

6To be precise, Proposition 10.C of Duffie (2001) is valid when there are only finitely many
consumers. If there are infinitely many consumers, then the utility possibility set, the set of
vectors of the consumers’ utility levels at the feasible allocations, is a subset of the set of the
real-valued functions on the set I of consumers, which is an infinite-dimensional vector space.
Under the assumptions mentioned in Footnote 5, the utility possibility set is convex, and, if, in
addition, the function i 7→ |Ui(ci)| is bounded, then the Hahn-Banach theorem (a separating
hyperplane theorem in infinite-dimensional vector spaces) guarantees the existence of such a
λ : I → R++.

7Weitzman (2001) and Ebert, Wei, and Zhou (2018) considered the case where γ = 1 and λ
is constantly equal to one.
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ι. As we will see, d is an analytic function. Define the representative consumer’s

discount rate function r : R+ → R++ by

r(t) = −f
′(t)

f(t)
, (5)

then
f(t2)

f(t1)
= exp

(
−
∫ t2

t1

r(t) dt

)
whenever 0 ≤ t1 < t2. Thus r represents the representative consumer’s continu-

ously compounded instantaneous subjective discount rate as a function of time.

Unlike the case of individual consumers, this is not constant but varies with t

unless all individual consumers have the same discount rate.

The equilibrium state price deflator is given by (f(t)u′((e(t))))t∈R+ . Thus the

price at time t1, relative to the current consumption, of the discount bond with

maturity t2 > t1 is equal to

Et1

(
f(t2)u

′(et2)

f(tt)u′(et1)

)
=
f(t2)

f(t1)
Et1

(
u′(et2)

u′(et1)

)
= exp

(
−
∫ t2

t1

r(t) dt

)
Et1

(
u′(et2)

u′(et1)

)
.

In Section 7, we will see how the heterogeneity in ρ affect these bond prices and

associated interest rates.

3 Measure of heterogeneous impatience

In this section, we use cumulant-generating functions to introduce a measure of

heterogeneity in the individual consumers’ discount rates. Recall from (4) that

the representative consumer’s discount factor function d can be written as

f(t) =

(∫
I

(λ(i))1/γ exp

(
−ρ(i)t

γ

)
dι(i)

)γ

. (6)

Define a probability measure µ on R++ by letting

µ(B) =

(∫
I

(λ(i))1/γ dι(i)

)−1 ∫
ρ−1(B)

(λ(i))1/γ dι(i) (7)
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for every Borel-measurable subset B of R++. Alternatively, µ can be defined by

first letting ιλ the finite measure on I for which

dιλ
dι

=

(∫
I

(λ(i))1/γ dι(i)

)−1

λ1/γ

and then letting µ = ιλ ◦ ρ−1. By definition, for every Borel-measurable subset

B of R++, µ(B) is the fraction of the consumers whose discount rates are in B,

where the fraction is calculated from the probability measure ι on the population

I and the density function on I that is proportional to λ1/γ. Denote its moment-

generating function by M , that is, M(s) =
∫
R++

exp(sq) dµ(q). Then

f(t) =

(∫
I

(λ(i))1/γ dι(i)

)γ (∫
I

exp

(
−qt
γ

)
dµ(q)

)γ

=

(∫
I

(λ(i))1/γdι(i)

)γ (
M

(
− t

γ

))γ

. (8)

Denote its cumulant-generating function by K, that is, K(s) = lnM(s). Then

r(t) = K ′
(
− t

γ

)
. (9)

It is well known if the first two moments exist (are finite), then K is twice differ-

entiable, with K ′(0) equal to the mean of µ and K ′′(0) equal to the variance of µ.

More generally, denote by µ(s) the probability measure on R++ such that

dµ(s)

dµ
(q) = exp (sq −K(s)) (10)

for every q ∈ R++. Then, by Morris (1982, Section 2), for every s, K ′(s) and

K ′′(s) are equal to the mean and variance of µ(s). Thus, K ′(s) > 0 for every s,

and, unless µ is concentrated on a single point, K ′′(s) > 0 for every s. Hence

K ′′(s)/K ′(s) is the ratio of the variance to the mean, and can be considered as

a measure of dispersion of the probability measure µ. We shall take it as the

measure of heterogeneity of the individual consumers’ discount rates.

Definition 1 A probability measure µ1 on R++ is at least as heterogenous as an-

other probability measure µ2 if, for the corresponding cumulant-generating func-

tions K1 and K2, K
′′
1 (s)/K

′
1(s) ≥ K ′′

2 (s)/K
′
2(s) for every s ≤ 0.
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Since K ′′(s)/K ′(s) measures the curvature of the function K, this means that

the individual consumers’ discount rates in an economy is more heterogeneous than

in another if the cumulant-generating function of the distribution of discount rates

is more convex for the first economy than for the second.

As can be seen in (6) and Definition 1, both the representative consumer’s

discount factor function and the at-least-as-heterogeneous-as relation depend on

the utility weighting function λ, which has been chosen so that the solution to the

social welfare maximization problem (2) is the Arrow-Debreu equilibrium alloca-

tion. This fact may be an impediment to applications of our subsequent results,

because it is, in general, difficult to relate the consumers’ utility weights to their

wealth levels.8 In Appendix A, we give some, albeit special, results on how the

two are related to each other and how our results can be used to assess the impact

of changes in consumers’ impatience or wealth levels.

In the rest of this section, we mention other candidates for the measure of

heterogeneity of the individual consumers’ discount rates. The most natural can-

didate would be the mean-preserving spread, or, equivalently, the second-order

stochastic dominance relation with a common mean, as it has been widely used

in the theory of expected utility. As we explained in the introduction, however,

this relation is not sufficient to guarantee the at-least-as-decreasingly-impatient-as

relation, in the sense to be defined in Section 4.

Another candidate is the eventual dominance introduced by Fishburn (1980,

Section 4). Roughly, one distribution eventually is said to dominate another if

there is a positive integer n such that the former n-th-order stochastically domi-

nates the latter. Then the equivalent condition of eventual dominance that Fish-

burn (1980, Corollary 2) established in the case of simple distributions (distribu-

tions that put positive probabilities only on finitely many points) can be inter-

preted in our case as saying that one distribution of the individual consumers’

discount rates eventually dominates another if and only if the representative con-

sumer’s discount factor function derived from the first distribution takes a higher

value than that derived from the second at every point in time. This result indi-

cates that eventual dominance bears upon the levels of discount factors, not upon

the rate of decrease of discount rates, the latter of which represents decreasing

impatience. A simple example illustrates this point. Consider two homogeneous

8An exception is Leamma 4.1 of Jouini and Napp (2007), who gave bounds on the discrepancy
between the two.
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economies, of which all individual consumers have a higher (common) discount

rate in the one economy than in the other. Then the distributions of discount

rates in the two economies are both degenerate, and the distribution of the first

economy first-order stochastically dominates that of the second. By definition,

this implies that the distribution of the first economy eventually dominates that

of the second. Yet, the two representative consumers are equally (in fact, not

at all) decreasingly impatient as there is no heterogeneity in the two economies.9

Ebert, Wei, and Zhou (2018) used a generalized version of eventual dominance

and studied the optimal stopping time problems when the decision maker’s dis-

count factor function is an weighted average of negative exponential functions, as

in (6), taking into consideration the effect of the higher values of discount factor

functions arising from eventual dominance.

4 Measure of decreasing impatience

Prelec (2004) introduced an more-decreasingly-impatient-than relation between

two utility functions over single dated outcomes, that is, functions of the form

f(t)u(x) defined over consumption levels x consumed at time t, where f : R+ →
(0, 1] is strictly decreasing, and u : R+ → R+ is strictly increasing and satisfies

u(0) = 0. The following definition is a variant of the relation, is concerned with

discount factor functions, rather than utility functions over timed consumptions.

Definition 2 A discount factor function f1 is at least as decreasingly impatient

as another discount factor function f2 if for every (t0, t1, t2, τ) ∈ R3
+ ×R,

f2(t0 + t1)

f2(t0)
≥ f2(t0 + t1 + t2 + τ)

f2(t0 + t2)
(11)

whenever
f1(t0 + t1)

f1(t0)
=
f1(t0 + t1 + t2 + τ)

f1(t0 + t2)
. (12)

9A more complicated, but probably more relevant, example can be constructed from Gamma
distributions in Subsection 6.1. Of the family of Gamma distributions parameterized by two
parameters (α, β), every subfamily parameterized only by α, with any fixed values for β, can
be linearly ordered by the first-order stochastic dominance, because the corresponding density
functions satisfy the monotone likelihood ratio property. Thus, it is linearly ordered by eventual
dominance as well. Yet, as we will see in the subsection, the representative consumers derived
from the distributions of this subfamily are all equally decreasingly impatient.
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To understand this definition, first compare the two ratios, f1(t0 + t1)/f1(t0)

and f1(t0+ t1+ t2)/f1(t0+ t2). The former is the discount factor that f1 applies to

the time interval [t0, t0 + t1], and the latter is the discount factor that d1 applies

to the time interval [t0 + t2, t0 + t1 + t2]. Since they are both applied to time

intervals of length t1, they would be equal if f1 exhibited exponential discounting.

However, they can be different, and, more specifically, the former is smaller than

the latter if the corresponding discount rate function is decreasing over time, just

as in the case of hyperbolic discounting. To compensate the difference between the

two ratios, we add an interval of length τ (which is positive if the discounting rate

function is decreasing over time, but negative if it is increasing) to the terminal

time t0 + t1 + t2 of the interval, so that the discount factor that f1 applies to

[t0+ t2, t0+ t1+ t2+ τ ] is equal to the discount factor that f1 applies to [t0, t0+ t1],

as shown in (12). The length τ can, therefore, be considered as a measure of

decreasing impatience of f1. Then (11) states that τ may too large for f2, so that

the discount factor that f2 applies to [t0 + t2, t0 + t1 + t2 + τ ] may be smaller than

the discount factor that f2 applies to the time interval [t0, t0 + t1]. In this sense,

the impatience of f1 decreases at least as rapidly as that of f2 as the time interval

under consideration is shifted into a more distant future. This is precisely the idea

that Definition 2 embodies.

Prelec (2004, Proposition 1) proved the following equivalence on the at-least-

as-decreasingly-impatient-as relation.

Theorem 1 (Prelec (2004)) Let d1 and d2 be thrice differentiable discount fac-

tor functions and r1 and r2 be the corresponding discount rate functions. Then the

following two conditions are equivalent.

1. f1 is at least as decreasingly impatient as f2.

2. −r′1(t)/r1(t) ≥ −r′2(t)/r2(t) for every t ∈ R+.

By this theorem, we can use −r′n/rn as the measure of decreasing impatience.

Since
d

dt

(
r1(t)

r2(t)

)
=
r1(t)

r2(t)

(
r′1(t)

r1(t)
− r′2(t)

r2(t)

)
,

the second is equivalent to themonotone likelihood ratio property, in that r1(t)/r2(t)

is a strictly decreasing function of t. Thanks to this theorem, to determine the

ranking of the degree of decreasing impatience between two discount factor func-

tions, it is sufficient to compare the rates of decrease of the corresponding discount

16



rate functions. In the subsequent analysis, we identify how the rate of decrease

of the representative consumer’s discount rate function is related to the degree of

heterogeneity of individual consumers’ discount rates.

In the rest of this section, we mention three measures of decreasing impa-

tience introduced by Rohde (2009, 2010, 2018). Rohde (2010) and Rohde (2018)

introduced measures of decreasing impatience, termed, respectively, as the hy-

perbolic factor and the DI measure, that are applicable to utility functions not

in the multiplicative form f(t)u(x). They both depend on three points in time

and one consumption level, and the ordering that they represent coincide with

Prelec’s (2004) more-decreasingly-impatient-than relation. The hyperbolic factor

takes constant values for the generalized hyperbolic discount factor functions in

the sense of Lowenstein and Prelec (1992, Section III). We will see this in Section

6.1. In the case of twice continuously differentiable discount factor functions, the

DI measure converge to Prelec’s measure −r′(t)/r(t) of decreasing impatience as

the difference between three time points converge to zero. The advantage of the DI

measure over the hyperbolic factor is that the DI measure can measure increasing

impatience and strongly decreasing impatience, in the latter case of which the hy-

perbolic factor would take negative values even when the discount factor function

does indeed exhibit decreasing impatience.

Rohde (2009) introduced the notion of decreasing relative impatience. It refers

to the tendency that a consumer is less willing to sacrifice the current consumption

to speed up consumption at a future point in time, the further into the future the

consumption occurs. She then introduced (Definition 3.3 of Rohde (2009)) the

more-decreasingly-relatively-impatient-than relation, and proved (Theorem 4.1 of

Rohde (2009)) that one discount factor function f1 is more decreasingly relatively

impatient than another discount factor function f2 if and only if−f ′′
1 /f

′
1 ≥ −f ′′

2 /f
′
2,

that is, the curvature of f1 is everywhere higher than that of f2.
10 The difference

between decreasing relative impatience and decreasing impatience is that the for-

mer is measured by the curvature of the discount factor function but the latter

is measured by the curvature of its logarithm (because ri = −(ln fi)
′). Since the

former is concerned with two consumption time points (current and future) but

the latter is concerned with just one point (future), it is potentially more useful

to study the behavior of a consumer who can consume at any point in time on the

10This is equivalent to the monotone likelihood ratio property, where f ′1(t)/f
′
2(t) is a strictly

decreasing function of t.
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continuous time span R+. We shall, however, not dwell on the analysis for two

reasons. First, since the curvature of a discount factor function can be written

in terms of the moment-generating function of the distribution of the individual

consumers’ discount rates, the more-decreasingly-relatively-impatient-than rela-

tion can be characterized in terms of the derivatives of the moment-generating

function,11 and the analysis goes much in the same way as the analysis for the

more-decreasingly-impatient-than relation of this paper. Second, as Theorem 4.5

of Rohde (2009) showed, the measure of decreasing relative impatience, −f ′′
i /f

′
i , is

affected by the size of the constant discount rate, it does not disentangle the effect

of time variation of discount rates from that of the level of the discount rates.

5 Comparison between two economies

Consider two economies, n = 1, 2, each with the space (In,In, ιn) of (names

of) consumers, a discount rate function ρn : In → R++, and a weighting function

λn : In → R++, derived from (2). Assume that the consumers of the two economies

share the same coefficient γ of constant relative risk aversion. Using (In,In, ιn),

ρn, and λn, define the discount factor function fn : R+ → R++ in the same way

as d in (4), and the discount rate function rn : R+ → R++ in the same way as r in

(5). Define the probability measure µn on R++ in the same way as µ in (7), and

let Kn be the cumulant-generating function of µn. These probability measures

may have been derived under the assumption that and the two economies share

the same space of consumers and the same average endowment process, and all

consumers have the logarithmic utility function, as in Lemma 1 in Appendix A.

It is possible but unnecessary to impose these assumptions for the results of this

section.

By differentiating both sides of (9), we obtain

r′n(t) = − 1

γ
K ′′

n

(
− t

γ

)
, (13)

−r
′
n(t)

rn(t)
=

1

γ

K ′′
n

(
− t

γ

)
K ′

n

(
− t

γ

) . (14)

11In particular, if the constant relative risk aversion γ is equal to one, then the curvature of a
discount factor function is equal to the curvature of the moment-generating function.
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The following theorem follows immediately from these equalities.

Theorem 2 The following two conditions are equivalent.

1. For every t ≥ 0, −r′1(t)/r1(t) > −r′2(t)/r2(t).

2. For every s ≤ 0, K ′′
1 (s)/K

′
1(s) > K ′′

2 (s)/K
′
2(s).

The first condition of this theorem states that the representative consumer of the

first economy is more decreasingly impatient than the representative consumer of

the second economy. The second condition states that the cumulant-generating

function of the distribution µn of individual consumers’ discount rates in the first

economy is more convex than in the second economy. This condition is equiva-

lent to saying that the variance divided by the mean of the individual consumers’

discount rates is higher in the first economy than in the second whenever their

distribution is transformed by a negative exponential density function. The theo-

rem, then, asserts that the representative consumer is more decreasingly impatient

if and only if the cumulant-generating function of the distribution of individual

consumers’ discount rates is more convex.

The next theorem deals with weaker conditions, although they are still useful

to investigate the term structure of interest rates.

Theorem 3 The following two conditions are equivalent.

1. For every t ≥ 0, if r1(t) = r2(t), then r
′
1(t) < r′2(t).

2. For every s ≤ 0, if K ′
1(s) = K ′

2(s), then K
′′
1 (s) > K ′′

2 (s).

The condition in the first part of this theorem implies the single-crossing property,

in that r1 crosses r2 at most once from above: if r1(t0) = r2(t0), then r1(t) < r2(t)

for every t > t0, and r1(t) > r2(t) for every t < t0. That is, the discount rate in

the first economy is higher than in the second up to a time, after which the former

is lower. The second part is the single-crossing property of the K ′
n, where K

′
1

crosses K ′
2 at most once from below. This condition is equivalent to saying that if

the distributions of the individual consumers’ discount rates are transformed by a

negative exponential density function so that the means after this transformation

are equal in the two economies, then the variance is higher in the first economy

than in the second. It is weaker than the monotone likelihood ratio property in

Theorems 1 and 2. This theorem follows directly from (9) and (13).
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In rest of this section, we see what kind of results, analogous to Theorem

2, would be obtained for other definitions of more-(decreasingly-)impatient-than

relation. Of three relations we shall take up, let us first consider the higher discount

factors, or, the more-elevated-than relation, of Fishburn (1980, Corollary 2) and

Eber, Wei, and Zhou (2017). This relation means, in symbols, that f1(t)/f1(0) ≥
f2(t)/f2(0) for every t ≥ 0.12 By (8), f1(t)/f1(0) ≥ f2(t)/f2(0) for every t if and

only if K1(s) ≥ K2(s) for every s ≤ 0. That is, one representative consumer

has higher discount factors than another if and only if the former is derived from

the weight distribution of the individual consumers’ discount rates of which the

cumulant-generating function takes higher values everywhere than that of the

latter. Second, consider the more-patient-than relation of Quah and Strulovici

(2014, Definition 1). In symbols, this relation means that f1(t)/f2(t) is a non-

decreasing function of t. In case the fn are differentiable, this is equivalent to

saying that r1(t) ≤ r2(t) for every t ≥ 0. By (9), r1(t) ≤ r2(t) for every t if and

only if K ′
1(s) ≤ K ′

2(s) for every s ≤ 0. Thus, one representative consumer is more

patient than another if and only if the former is derived from the distribution of the

individual consumers’ discount rates of which the cumulant-generating function

has higher slopes everywhere than that of the latter. Thus, these two relations of

more (decreasing) impatience are concerned with the values and first derivatives

of the cumulant-generating function of the distribution of individual consumers’

discount rates, while Prelec’s (2004) more-decreasingly-impatient-than relation,

which was considered in Theorem 2, has to do with the curvature of the cumulant-

generating function.

The last relation we consider is the more-decreasingly-relatively-impatient-than

relation of Rohde (2009, Definition 3.2). In symbols, this means that−f ′′
1 (t)/f

′
1(t) ≥

−f ′′
2 (t)/f

′
2(t) for every t ≥ 0. By (9) and (13),

−f
′′
n(t)

f ′
n(t)

= rn(t)−
r′n(t)

rn(t)
= K ′

n

(
− t

γ

)
+

1

γ

K ′′
n

(
− t

γ

)
K ′

n

(
− t

γ

) . (15)

Thus, one representative consumer is more decreasingly relatively impatient than

another if and only if the cumulant-generating functions K1
1 and K1

2 of the distri-

12Normalization by dividing by fn(0) is necessary because fn(0) need not be equal to 0 ac-
cording to the definition (6) of fn.
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butions of the individual consumers’ discount rates satisfy

γK ′
1 (s) +

K ′′
1 (s)

K ′
1 (s)

≥ γK ′
2 (s) +

K ′′
2 (s)

K ′
2 (s)

for every s ≤ 0. This inequality shows that Rhode’s (2009) more-decreasingly-

relatively-impatient-than relation is concerned with both the derivatives and the

curvatures of the cumulant-generating function, the two added up with weights

being the common coefficient γ of relative risk aversion, and 1, respectively.

6 Comparison within a parametrized family

In many applications, such as those to interest rate models presented in Section ,

we do not compare two particular distributions µ1 and µ2 of individual consumers’

discount rates. Rather, we consider a parameterized family of distributions of indi-

vidual consumers’ discount rates, say (µ(·, α, β))(α,β)∈Θ where Θ is an open subset

of R2, and determine how the parameter values (α, β) are related to the mea-

sure of the representative consumer’s decreasing impatience. In this section, we

give three such families, consisting of Gamma distributions, Poisson-like distribu-

tions, and Bernoulli distributions. We will see that in these classes, only one of

the two parameters is crucial for the monotone likelihood ratio property and the

single-crossing property. The class of quasi-hyperbolic discount factor functions is

outside the scope of our analysis, because they are not continuous at time 0.

6.1 Gamma distributions

First, we consider the family of gamma distributions, each with parameters α and

β, that is, its density function (with respect to Lebesgue measure) is given by

q 7→ βαqα−1

Γ(α)
exp(−βq). (16)

Gamma distributions are most commonly used as distributions of subjective time

discount rates, as in Weitzman (2001), Gollier and Zeckhauser (2005), and Hara

(2007).

Define f(·, α, β) as the discount factor function when the distribution µ defined
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in (7) has the density function (16). That is,

f(t, α, β) =

(∫ ∞

0

exp

(
−qt
γ

)
βαqα−1

Γ(α)
exp(−βq) dq

)γ

.

Let r(·, α, β) be the discount factor function corresponding to d(·, α, β), that is,

r(t, α, β) = −

∂f

∂t
(t, α, β)

d(t, α, β)
.

The more-decreasingly-impatient-than relation can be easily parameterized in the

family of Gamma distributions.

Proposition 1 For all (α1, β1) and (α2, β2),

−

∂r

∂t
(t, α1, β1)

r(t, α1, β1)
> −

∂r

∂t
(t, α2, β2)

r(t, α2, β2)
.

for every t ≥ 0 if and only if β1 < β2.

This proposition states that the parameter α is irrelevant for the ordering of de-

creasing impatience. Since the family of exponential distributions, which was

investigated by Weitzman (2001) and Gollier and Zeckhauser (2005), is a one-

parameter subfamily of Gamma distributions parameterized by β (and α fixed

at 1), every pair of two distinct exponential distributions of discount rates gives

rise to a pair of the representative consumers’ discount factor functions that can

be strictly ordered by the more-decreasingly-impatient-than relation. On the

other hand, the family of chi-squared distributions is a one-parameter subfam-

ily of Gamma distributions parameterized by α (with 2α an integer and α fixed

at 2), all chi-squared distributions of discount rates give rise to the representative

consumers’ discount factor functions that are all equally decreasingly impatient.

The proof of the proposition is simple and goes as follows. The corresponding

cumulant-generating function K(·, α, β) is given by

K(s, α, β) = α(ln β − ln(β − s)).
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Thus

∂K

∂s
(s, α, β) =

α

β − s
, (17)

∂2K

∂s2
(s, α, β)

∂K

∂s
(s, α, β)

=
1

β − s
. (18)

Hence, the proposition follows from Theorem 2. The equalities (17) and (18) also

show that

r(t, α, β) =
αγ

t+ βγ
, (19)

−

∂r

∂t
(t, α, β)

r(t, α1, β1)
=

1

t+ βγ
(20)

for every t. Thus, the representative consumer has a generalized hyperbolic dis-

count rate function of Loewenstein and Prelec (1992) and the measure of decreas-

ing impatience is, indeed, independent of α; and the role of α is to determine the

levels of the representative consumer’s discount rates. Moreover, the hyperbolic

factor of Rohde (2010) is equal to (βγ)−1, which is constant (an advantage of the

hyperbolic factor over our measure of decreasing impatience) and independent of

α, and the DI measure of Rohde (2018) coincides with (20).

In concluding this subsection, we note that the Gamma distributions con-

stitute an exponential family,13 and the the representative consumer’s discount

rate functions are particularly easy to calculate for an exponential family. To see

this, write φ = −β and ψ = α − 1, and define w(ψ, q) = ψ ln q and v(φ, ψ) =

(ψ + 1) ln(−φ)− ln Γ(ψ + 1). Then

βαqα−1

Γ(α)
exp(−βq) = exp (φq + w(ψ, q) + v(φ, ψ)) . (21)

Thus, the Gamma distributions, indeed, constitute an exponential family. With

a slight abuse of notation, denote by K(·, φ, ψ) the cumulant-generating function

that corresponds to parameters (φ, ψ) in the above expression, then K(s, φ, ψ) =

13The definition of a one-dimensional exponential family can be found in Hogg and Craig
(1978, Section 4 of Chapter 10). In fact, a family of distributions, parameterized by (φ,ψ) that
can be represented by the right-hand side of (21) is more general than an exponential family,
because, in (21), w(ψ, q) need not be multiplicatively separable between ψ and q.
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v(φ, ψ)−v(φ+s, ψ). Denote the corresponding discount rate function by r(·, φ, ψ).
Then, by (9),

r(t, φ, ψ) = − ∂v

∂φ

(
φ− t

γ
, ψ

)
.

Thus, for an exponential family, Theorems 2 and 3 can be stated in terms of v.

6.2 Poisson-like distributions

In this subsection, we show that if the distribution of the individual consumers’

discount rates is similar to a Poisson distribution, then the representative consumer

exhibits constant absolute decreasing impatience in the sense of Bleichrodt, Rohde,

and Wakker (2009).

Let ε > 0. We consider the distribution that gives each discount rate nε

with n = 0, 1, 2, . . . a probability exp(−α)αn/n!. This is the Poisson distribution

with parameter α, except that the probability masses are given to 0, ε, 2ε, . . .

rather than to 0, 1, 2, . . . . Denote by K(·, ε, α) its cumulant generating function

parameterized by (ε, α). Define f(·, ε, α) as the discount factor function when the

distribution µ defined in (7) coincides with the above distribution. Denote by

r(·, ε, α) the corresponding discount rate function.

Proposition 2 For every (ε, α) and every t ≥ 0,

−

∂r

∂t
(t, ε, α)

r(t, ε, α)
=
ε

γ

This proposition shows that the representative consumer exhibits constant abso-

lute decreasing impatience in the sense of Bleichrodt, Rohde, and Wakker (2009).

The proof follows from K(s, ε, α) = α(exp(sε)− 1)) and

r(t, ε, α) =
∂K

∂s

(
− t

γ
, ε, α

)
= εα exp

(
− ε

γ
t

)
. (22)

The proposition also implies that for all (ε1, α1) and (ε2, α2),

−

∂r

∂t
(t, ε1, α1)

r(t, ε1, α1)
> −

∂r

∂t
(t, ε2, α2)

r(t, ε2, α2)

for every t ≥ 0 if and only if ε1 > ε2. That is, the more-decreasingly-impatient
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relation is determined solely by ε. As can be seen in (22), the role of the Poisson

parameter α is to determine the levels of the representative consumer’s discount

rates. Since the utility maximization problem (1) of an individual consumer with

the zero discount factor may not have a solution, the fact that these Poisson-like

distributions give a positive probability mass exp(−α) to the zero discount rate

is a drawback of these distributions. Yet, according to Bernsteins’s theorem and

the Inversion Formula,14 these are the only distributions that give rise to constant

absolute decreasing impatience for the representative consumer.

In concluding this subsection, we present another, closely related, use of Bern-

stein’s theorem. Note that the discount rate (not factor) function (22) is a negative

exponential function and, thus, a completely monotone function, that is, its first

derivative is negative and higher derivatives alternate in sign. This fact can be

restated as saying that the derivative of its integral
∫ t

0
r(s, ε, α) ds is a completely

monotone function of t. Since f(t, ε, α) = f(0, ε, α) exp
(
−
∫ t

0
r(s, ε, α) ds

)
, we

can apply Condition 2 of Feller (1970, Section 4 of Chapter XIII) to show that

the corresponding discount factor function f(·, ε, α) is also a completely monotone

function.15 More generally, whenever the discount rate function r is completely

monotone, so is the discount factor functions f . By Bernstein’s theorem, there-

fore, there is a distribution of individual consumers’ discount rates with which

r is the discount rate function of the representative consumer. In particular, if

the discount rate function exhibits relative (not absolute) decreasing impatience

in the sense of Bleichrodt, Rohde, and Wakker (2009) with a positive constant,

then the discount rate function is a negative power function, which is completely

monotone. It is, thus, the representative consumer’s discount rate function for

some distribution of individual consumers’ discount rates.

6.3 Bernoulli distributions

In this subsection, we consider the set of all Bernoulli distributions that put prob-

ability 1/2 to each of α+ β and α− β, where α > β > 0. We define the discount

factor function f(·, α, β) and the discount rate function r(·, α, β) in the same way

14These facts are stated as Theorems 1 and 2 of Feller (1970, Section 4 of Chapter XIII). Ebert,
Wei, and Zhou (2018) pointed out that constant absolute decreasing impatience can be obtained
for a representative consumer’s discount factor function, but did not specify the distributions
that give rise to constant absolute decreasing impatience.

15The use of Condition 2 of Feller (1970, Section 4 of Chapter XIII) in this context is due to
Ebert, Wei, and Zhou (2018).
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as we did in the previous subsection but using the Bernoulli distributions.

Proposition 3 For all (α1, β1) and (α2, β2),
∂r

∂t
(t, α2, β2) <

∂r

∂t
(t, α1, β1) when-

ever r(t, α1, β1) = r(t, α2, β2), if and only if β1 > β2.

Note that the values of the αn are irrelevant for the ordering of the single-crossing

property. The proof is elementary and given in Appendix B.

As for the more-decreasingly-impatient-than relation, note from (45) and (46)

that ∂K(s, α, β)/∂s is a strictly increasing function of α but ∂2K(s, α, β)/∂s2 does

not depend on α. Hence, if α1 < α2 and β1 = β2, f(·, α1, β1) is more decreasingly

impatient than f(·, α2, β2). We will show that even if α1 = α2 and β1 > β2,

d(·, α1, β1) is not more decreasingly impatient than d(·, α2, β2). Note that in this

case, the Bernoulli distribution with (α2, β2) second-order stochastically dominates

the Bernoulli distribution (α1, β1). This fact shows, thus, that the second-order

stochastic dominance relation is not sufficient for the more-decreasingly-impatient-

than relation.

Proposition 4 The partial derivative with respect to β of the measure of decreas-

ing impatience,

−

∂r

∂t
(t, α, β)

r(t, α, β)
, (23)

is positive where t is sufficiently close to zero and negative where t is sufficiently

large.

The proof is elementary and given in Appendix B. This proposition implies

that for all α and β with α > β > 0, a small increase in β does not make the rep-

resentative consumer more decreasingly impatient or less decreasingly impatient.

Rather, as the two possible values, α+ β and α− β, of the Bernoulli distribution

become further apart, the local measure (23) of decreasing impatience increases in

a sufficiently near future, but decreases in a sufficiently distant future. The fact

underlying this result was stated, in general terms, in the introduction, but can be

more specifically explained as follows. As time goes to infinity, the more patient

consumer’s share in the average consumption and wealth converges to one, and

the less patient consumer’s share converges to zero. As can be shown based on

the the first-order conditions for the solution to the problem (2), one for the (less
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patient) consumer with discount rate α+ β, and the other for the (more patient)

consumer with discount rate α− β, the convergence is faster, the larger the value

of β is. Thus, if an economy (with a larger β) consists, at the initial time 0, of

more heterogeneous individual consumers, then the representative consumer is,

for a while, more decreasingly impatient; but as time elapses, the distribution of

discount rates, weighted by the wealth shares on intermediate times, becomes less

heterogeneous, resulting in a less decreasingly impatient representative consumer.

A numerical example may be of some help to understand this somewhat in-

conclusive result. Take the mean 4% (α = 0.04) and the standard deviation 3%

(β = 0.03).16 Then the derivative (48) of the curvature (47) of the cumulant-

generating function with respect to the standard deviation β turns out to be

positive if and only if s is approximately less than 85. According to (14), this

implies that if the coefficient of constant relative risk aversion is equal to one (the

case of the logarithmic utility function) for both consumers, then a small (infinites-

imal) increase in the standard deviation of the binary distribution of individual

consumers’ discount rates increases the local measure −r′(t)/r(t) of the represen-
tative consumer’s decreasing impatience during the first 85 years, but such an

increase decreases −r′(t)/r(t) thereafter.17

In concluding this section, we touch a generalization of the above analysis on

the single-crossing property. Note that if Z is a random variable taking values 1

and −1 with probability 1/2 each, then the distribution of its affine transformation

α+βZ coincides with the Bernoulli distribution with parameter (α, β). Conversely,

all Bernoulli distributions are generated by some affine transformations of Z. If,

more generally, Z is any random variable of zero mean that is bounded from below,

then a family of the distributions of random variables α + βZ can be considered

as a family of distributions of discount rates. An example of such families is the

family of uniform distributions of which the supports are in R+, as in Sozou (1998,

Section 4(b)).18 For such a family, ∂K(s, α, β)/∂s is quasi-linear in α. Hence,

f(·, α1, β1) is more decreasingly impatient than f(·, α2, β2) whenever α1 < α2 and

β1 = β2.

16The mean and standard deviation of this numerical example are chosen to match those used
by Weitzman (2001, Sections III and IV).

17In the context of climate change, 85 years is well within the range of decision making for
which a careful choice of discount rates is required.

18Take Z so that it follows the uniform distribution, say, on (−1, 1).
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7 Applications to interest rate models

In this section, we apply the result in Sections 5 and 6 to interest rate mod-

els. In particular, we compare the yield curves and forward rates processes of

two exchange economies sharing the same endowment process but having differ-

ent distributions of individual consumers’ discount rates. We conduct a similar

comparative exercise for short-rate processes in a separate subsection, because its

analysis requires a more careful specification on the average endowment processes.

The analysis leads to a broader class of short-rate processes that are tractable and

well founded on the equilibrium consideration and, at the same time, accommodate

heterogenous impatience. This will be best seen through the hyperbolic extension

of the short-rate process of Cox, Ingersoll, and Ross (1985) in the final subsection.

7.1 Yield curves and forward rates

We begin with a close look at the term structure of interest rates of an economy

of heterogenous impatience. Assume that all consumers share a common constant

coefficient γ of relative risk aversion but have heterogeneous impatience. Denote

by µ the distribution of individual consumers’ discount rates defined by (7). Then

the representative consumer’s discount factor function f and discount rate func-

tion r are given by (8) and (9). The state-price density process π is equal to

the marginal utility process fu′(e) = (f(t)u′(e(t)))t∈R+
evaluated at the average

endowment process e = (e(t))t∈R+ . Hence the price at time t1, relative to the

current consumption, of the discount bond with maturity t2 > t1 is equal to

Et1

(
π(t2)

π(t1)

)
=
f(t2)

f(t1)
Et1

(
u′(et2)

u′(et1)

)
= exp

(
−
∫ t2

t1

r(t) dt

)
Et1

(
u′(et2)

u′(et1)

)
. (24)

We denote this price by B(t1, t2). The yield to maturity, at time t1, of the discount

bond with maturity t2 > t1 is equal to

− 1

t1 − t2
lnB(t1, t2) =

1

t2 − t1

∫ t2

t1

r(t) dt− 1

t2 − t1
lnEt1

(
u′(et2)

u′(et1)

)
. (25)

We denote this Y (t1, t2).

Another rate that we are interested in is the instantaneous forward rate, deter-

mined at time t1, for the delivery of the about-to-mature bond at time t2 is equal
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to

− ∂

∂t2
lnB(t1, t2) = r(t2)−

d

dt2
lnEt1

(
u′(et2)

u′(et1)

)
,

if

Et1

(
u′(et2)

u′(et1)

)
(26)

is a differentiable function of t2.
19 We denote this by F (t1, t2).

In the rest of this subsection, we compare the yield curves and forward rates

of two economies having a common average consumption process but different

distributions of individual consumers’ discount rates. While the literature of the

term structure of interest rates has been looking into the conditions under which,

say, the yield curve is flat, normal (upward sloping), or abnormal (downward

sloping), we will not look into the term structure of each of the two economies

in isolation. Rather, we will see how the term structures of the two economies

are related to each other as a consequence of the difference in heterogeneity of

individual consumers’ impatience. We will then determine the term structure of

one economy from that of the other via this relation once the latter is known.

Lemma 2 in Section A shows that this approach is widely applicable because by

assuming that a term structure is obtained at an Arrow-Debreu equilibrium of an

economy with heterogeneously impatient consumers imposes no restriction on the

term structure.

Let d1 and d2 be the discount factor functions derived from two economies,

of which the weighting functions are λ1 and λ2, the distributions of individual

consumers’ discount rates are µ1 and µ2, just as explained at the beginning of

Section 5. That is, for each n = 1, 2,

fn(t) =
1(∫

I
λ
1/γ
n dι

)γ

(∫
I

(λn(i) exp(−ρn(i)t))1/γ dι(i)

)γ

(27)

=

(∫ ∞

0

exp

(
−qt
γ

)
dµn(q)

)γ

.

Denote the cumulant-generating functions of µ1 and µ2 by K1 and K2. Let r1

and r2 be the corresponding discount rate functions. For each = 1, 2, let Bn, Yn,

and Fn be the corresponding bond prices, yields to maturity, and instantaneous

19This is true if e is an Ito process, as assumed in the next subsection.
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forward rates. Then

B2(t1, t2)

B1(t1, t2)
= exp

(
−
∫ t2

t1

(r1(t)− r2(t)) dt

)
,

Y1(t1, t2)− Y2(t1, t2) =
1

t2 − t1

∫ t2

t1

(r1(t)− r2(t)) dt, (28)

F1(t1, t2)− F2(t1, t2) = r1(t2)− r2(t2), (29)

These equalities and Theorem 3 can also be used to establish the single-crossing

property of the yield curves and the instantaneous forward rates. The proof of

this theorem is given in Appendix B.

Theorem 4 Suppose that for every s ≤ 0, K ′′
1 (s) > K ′′

2 (s) whenever K ′
1(s) =

K ′
2(s). Then, for every t1 ≥ 0 and every t2 > t1, if Y1(t1, t2) = Y2(t1, t2), then

Y1(t1, t) < Y2(t1, t) for every t > t2 and Y1(t1, t) > Y2(t1, t) for every t ∈ [t1, t2);

and if F1(t1, t2) = F2(t1, t2), then F1(t1, t) < F2(t1, t) for every t > t2 and

F1(t1, t) > F2(t1, t) for every t ∈ [t1, t2).

Theorem 4 compares the instantaneous forward rates, in the two economies,

determined at a fixed time t1 but with a variable delivery time t2. Another compar-

ison worth exploring is, as in Heath, Jarrow, and Morton (1992), the instantaneous

forward rates, with a fixed maturity t2, but with a variable time t at which the

rates are determined. What this means, in symbols, is how

F1(t, t2)− F2(t, t2) (30)

depends on t ≤ t2. In fact, by (29), (30) is equal to r1(t2)− r2(t2) independently

of t1. We can conclude, therefore, that the instantaneous forward rates in two

economies, with a fixed maturity but with a variable time at which the rates are

determined, has a constant difference, rather than the single-crossing property.20

7.2 Short-rate processes

In this subsection, we conduct a comparative statics exercise on short-rate pro-

cesses in the order of decreasing generality. First, to guarantee that the short-rate

20The constant difference does depend on the maturity time, and it has the single-crossing
property with zero whenever the cumulant-generating functions have the property.

30



process is well defined, we assume, in addition to the conditions used in the previ-

ous subsection, that the average endowment process e is an Ito process. Next, we

consider the case in which the short-rate process is itself an Ito process. Finally,

we consider the case in which the short-rate process is a solution to a stochastic

differential equation. Our aim is twofold. One is to obtain the single-crossing

property along the lines of Theorem 4 for short-rate processes. The other is to

clarify under what conditions the most commonly used restrictions on short-rate

processes, such as the affine structure and the Gaussian structure, can be obtained

in the second economy whenever it is assumed for the first economy.

Let the filtration (F (t))t∈R+ be generated by a one-dimensional standard

Brownian motion B = (B(t))t∈R+ and the average endowment process e (where

the average is taken over the population I) is a positive-valued Ito process, written

as

de(t) = e(t)µe(t) dt+ e(t)σe(t) dB(t)

for some real-valued adapted processes µe = (µe(t))t∈R+ and σe = (σe(t))t∈R+ .

Since π = fu′(c), Ito’s Lemma implies that π is also a positive-valued Ito process,

which can be written as

dπ(t) = −π(t)η(t) dt− π(t)κ(t) dB(t) (31)

for some real-valued adapted processes η = (η(t))t∈R+ and κ = (κ(t))t∈R+ . The

process η is the short-rate process and η(t) is the instantaneous riskless interest

rate at time t. Ito’s Lemma also implies that

η = r + γµe −
γ(γ + 1)

2
σ2
e . (32)

This equality shows how the short-rate process is tied to the average endowment

process via µe and σe, as well as to the representative consumer’s discount rate r.

It can be used to derive the short-rate process of one economy from that of the

other whenever the latter are known.

To compare the short-rate processes of two economies sharing the same average

endowment process, suppose that f1 and f2 are the discount factor functions de-

rived from two economies as in the previous subsection. The probability measures

µ1 and µ2, the cumulant-generating functions K1 and K2, and the corresponding

discount rate functions r1 and r2 are defined in the same manner. Denote the
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short-rate process by η1 and η2. By (32),

η1 − η2 = r1 − r2. (33)

That is, the difference in short-rate processes between the two economies is equal

to the difference in the representative consumers’ discount rates. Although η1

and η2 are, in general, stochastic processes, the difference η1 − η2 is not, because

neither is r1−r2. This, along with Theorem 3, is sufficient to establish the following

(stochastic) single-crossing property for short-rate processes.

Theorem 5 Suppose that for every s ≤ 0, K ′′
1 (s) > K ′′

2 (s) whenever K ′
1(s) =

K ′
2(s). Then, for every t1 ≥ 0 if η1(t1) = η2(t1), then η1(t) < η2(t) for every t > t1

and η1(t) > η2(t) for every t < t1.

Since η1 − η2 is a process that is not stochastic, the time at which the two

short-rate processes η1 and η2 take the same value is not stochastic either. The

above theorem, thus, implies that there is a deterministic time before which the

short rate is higher in the first economy than in the second; and after which it is

lower in the first economy than in the second.

The relation (33) also allows us to show that if one of the two has an affine

structure, so does the other, and how the two are related to each other.

Theorem 6 Suppose that there are two functions h1 : R
2
+ → R and h : R2

+ → R

such that

Y1(t1, t2) = h1(t1, t2) + h(t1, t2)η1(t1)

for every (t1, t2) with t1 < t2. Define a function h2 : R
2
+ → R by

h2(t1, t2) = h1(t1, t2)−
1

t2 − t1

∫ t2

t1

(r1(t)− r2(t)) dt,

then

Y2(t1, t2) = h2(t1, t2) + h(t1, t2)η2(t1).

This theorem shows, in particular, that the coefficients to the short rate, h(t1, t2),

are equal between the two economies. It follows immediately from (28) and (33).

The other process κ that appears in the state price process (31) is known as the

market-price-of-risk process, as it represents the adjustment necessary to transform

the original probability measure to the equivalent martingale measure. Again by
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Ito’s Lemma, κ = γσe. Thus, it is independent of the representative consumer’s

impatience. This independence, however, has an important implication on the

applicability of our results, which we explain in the next paragraph.

Suppose in addition that the short-rate process η is an Ito process that can be

written as

dη(t) = µη(t) dt+ ση(t) dB(t) (34)

for some real-valued adapted processes µη = (µη(t))t∈R+ and ση = (ση(t))t∈R+ .

This is an expression of the short-rate process in terms of the physical (natural)

measure P on the state space Ω, as B is a standard Brownian motion under P . In

the literature on short-rate processes, however, it is customary to represent them

in terms of a standard Brownian motion under the equivalent martingale measure.

The convenience of doing so can be seen in the price (25) of the discount bond.

Using the equivalent martingale measure Q, we can rewrite the bond price as

EQ
t1

(
exp

(
−
∫ t2

t1

η(t) dt

))
and, to calculate this expectation with respect to Q, in the case of Gaussian

models, for example, it would be better if η is written as an Ito process in terms

of a standard Brownian motion under Q. It can be derived from the market-

price-of-risk process κ by defining another Ito process υ by υ(0) = 0 and dυ(t) =

−κ(t)υ(t)dB(t), and, then, by letting

Et

(
dQ

dP

)
= υ(t)

for every t. Then define another Ito process BQ by BQ(0) = 0 and dBQ(t) =

dB(t)+κ(t)dt. By Girsanov’s theorem, BQ is a standard Brownian motion under

Q. Then the short-rate process (34) can be written in terms of the Brownian

motion BQ with respect to Q as

dη(t) = (µη(t)− ση(t)κ(t)) dt+ ση(t) dB
Q(t).

This is an expression of the short-rate process under the equivalent martingale

measure Q. We have seen that the market-price-of-risk process κ does not depend

on the heterogeneity of the individual consumers’ discount rates. We will also see

that ση does not depend on the heterogeneity either. Only µη depends on the
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heterogeneity. Thus, all results on the diffusion term of the short-rate process,

and all results on the difference in the drift term between two economies, that are

valid under the physical measure P are also valid under the equivalent martingale

measureQ. It is, therefore, sufficient to state all results under the physical measure

P .

The following theorem gives the relationship between the drift and diffusion

terms of the two short-rate processes. Specifically, it shows that the difference in

the drift terms is equal to the difference in the reductions of the representative

consumers’ discount rates, and that the diffusion terms are the same. If follows

immediately from (33).

Theorem 7 Suppose that the short-rate process η1 of the first economy is an Ito

process written as

dη1(t) = µ1(t) dt+ σ(t) dB(t) (35)

for some R-valued adapted processes µ1 = (µ1(t))t∈R+ and σ = (σ(t))t∈R+. Define

another adapted processes µ2 by µ2 = µ1 − (r′1 − r′2). Then the short-rate process

η2 of the second economy is also an Ito process, written as

dη2(t) = µ2(t) dt+ σ(t) dB(t). (36)

Note that in Theorem 7, the short-rate process ηn is represented via a stochas-

tic integration, not as the solution to a stochastic differential equation. The latter

is predominantly used in the literature on short-rate processes, because, then, the

conditional distribution of short rates depends only on the current short rate, not

on the past ones. The class of affine structure models is such an example. The fol-

lowing corollary of Theorem 7 deals specifically with the short-rate processes that

are solutions to stochastic differential equations. The proof is given in Appendix

B.

Corollary 1 1. Suppose that the short rate process η1 of the second economy

is the solution to a stochastic differential equation

dη1(t) = h1(η1(t), t) dt+ g1(η1(t), t) dB(t). (37)

for some functions h1 : R+ × R+ → R and g1 : R+ × R+ → R. Then,
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define two functions h2 : R+ ×R+ → R and g2 : R+ ×R+ → R by

h2(x, t) = h1(x+ (r1(t)− r2(t)), t)− (r′1(t)− r′2(t)), (38)

g2(x, t) = g1(x+ (r1(t)− r2(t)), t). (39)

Then the short-rate process η2 of the second economy is the solution to the

stochastic differential equation

dη2(t) = h2(η2(t), t) dt+ g2(η2(t), t) dB(t) (40)

2. Suppose that the short rate process η1 of the first economy is the solution to

a stochastic differential equation

dη1(t) = (h1(t) + h(t)η1(t)) dt+ (g1(t) + g(t)η1(t))
k dB(t). (41)

for some functions h1 : R+ → R, h : R+ → R, g1 : R+ → R, g : R+ → R,

and a k ≥ 1/2. Define two functions h2 : R+ → R and g2 : R+ → R by

h2(t) = h1(t) + h(t)(r1(t)− r2(t))− (r′1(t)− r′2(t)),

g2(t) = g1(t) + g(t)(r1(t)− r2(t)),

then the short rate process η2 of the second economy is the solution to the

stochastic differential equation

dη2(t) = (h2(t) + h(t)η2(t)) dt+ (g2(t) + g(t)η2(t))
k dB(t).

The first part of this corollary shows that if the short-rate process of the first

economy is given as the solution to a stochastic differential equation, then so is

the short-rate process of the second economy, and show also how the functions

defining the latter can be obtained from those of the former. The second part

shows that if the short-rate process of the first economy has the affine structure,

then so does the short-rate process of the second economy, and show also how

the functions defining the latter can be obtained from those of the former. In

particular, it implies that if η1 is Gaussian, then k = 1 and g is constantly equal

to zero, and, thus, η2 is also Gaussian; and that η1 is a short-rate process of Ho

and Lee, then the three functions f , g1, and g are all constant, and the first and
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last of these three always take value zero, and, thus, η2 is also a short-rate process

of Ho and Lee.

7.3 Hyperbolic CIR model

As an application of Corollary 1, we present, in this subsection, how the the

term structure of interest rates of Cox, Ingersoll, and Ross (1985) is affected

when the representative consumer has a generalized hyperbolic discounting rate

function of Lowenstein and Prelec (1992). This case is interesting because the

(generalized) hyperbolic discounting is a most commonly used discounting that

exhibits decreasing impatience, and also because the form of the resulting short-

rate process turns out to be different from the CIR form. That the process is given

in such an explicit form deserves special attention, as deriving such an explicit form

of yield curves and short-rate processes in economies of heterogeneous consumers

have been known to be a formidable task, as can be seen in Dumas (1989) and

Wang (1996).

We take the first economy as an economy of the CIR model with the common

logarithmic utility function (γ = 1), a common discount rate ρ̄, and a common

endowment process. Formally, we take I = (0, 1), I to be the set of all Lebesgue

measurable subsets of I, and ι be the Lebesgue measure restricted on I. Both

ρ1 : I → R++ and θ1 : I → R++ are constant, and the former always takes value

ρ̄ and the latter always takes value 1. Let η1 a short-rate process of the CIR model,

that is, suppose that there are a k0 ∈ R++, a k1 ∈ R++, and an η̄ ∈ R++ such

that

dη1(t) = k0(η̄ − η1(t)) dt+ k1
√
η1(t) dB(t). (42)

Let κ be any positive-valued process and define the average endowment process e,

the utility weights ρ1, the wealth shares θ1, and the state-price density process π1

with dπ1(t) = −η1(t)π1(t) dt− κ(t)π1(t) dB(t) via Lemma 2.21

Then, take the second economy as an economy in which all the individual

consumers have the logarithmic utility and the same endowment process e, but

their discount rates are distributed according to a Gamma distribution of which

the mean is equal to ρ̄, the common discount factor of the first economy. The

following proposition, proved in Appendix B, gives the short-rate process η2 of the

21The average endowment process e coincides with the equilibrium consumption process of
the representative agent of the CIR model if we let κ =

√
η1.
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second economy.

Proposition 5 If θ2 : I → R++ constantly takes value 1 and ρ2 : I → R++

coincides with the inverse of the cumulative distribution function of the Gamma

distribution (16) satisfying ρ̄ = α/β, then

dη2(t) = k0

((
η̄ −

(
t

t+ β
− β

k0(t+ β)2

)
ρ̄

)
− η2(t)

)
dt

+ k1

√
η2(t) +

t

t+ β
ρ̄ dB(t). (43)

The inverse of any continuous and strictly increasing cumulative distribution

function is a (continuous and strictly increasing) function on (0, 1) and its cu-

mulative distribution function, with respect to the Lebesgue measure on (0, 1),

coincides with the given cumulative distribution function.22 Thus, in Proposition

5, together with the assumption of equal wealth shares, the distribution of the

individual consumers’ discount rates coincides with the Gamma distribution with

parameters (α, β). The equality ρ̄ = α/β says that the parameters (α, β) are

chosen so that the mean of the individual consumers’ discount rates of the second

economy is equal to ρ̄. The parameter β, as proved in Proposition 1, measures the

heterogeneity of individual consumers’ impatience and, thus, the decreasing impa-

tience of the representative consumer’s discount factor function, with the smaller

β leading to the more heterogenous individual consumers and the more decreas-

ingly impatient representative consumer. Thus, (43) gives a family of hyperbolic

extensions of the CIR model, where the mean of the individual consumers’ dis-

count rates is fixed at ρ̄ and the representative consumer’s decreasing impatience

is parameterized by β.

The short-rate process η2 of the heterogeneous economy has the same speed of

adjustment, k0 as the short-rate process η1 of the homogeneous economy, but has

a different mean of reversion. Indeed, the mean of reversion is

η̄ −
(

t

t+ β
− β

k0(t+ β)2

)
ρ̄,

which is deterministic but time-varying, decreasing strictly from η̄+ ρ̄/k0β to η̄− ρ̄
as t→ ∞. Keeping t fixed but varying β instead, we see that it increases strictly

22This is a special case of Proposition 3.1(2) of Embrechts and Hofert (2014) on the generalized
inverses of cumulative distribution functions, which need not be continuous or strictly increasing.
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from η̄−ρ̄ to η̄ as β → ∞. Since the larger β leads to the less heterogenous individ-

ual consumers and the more decreasingly impatient representative consumer, this

means that as the individual consumers’ impatience becomes more heterogenous,

and hence the representative consumer becomes more decreasingly impatient, the

mean of reversion decreases, from the homogeneous benchmark level ρ̄ to η̄ − ρ̄.

8 Conclusion

In this paper, we have given a precise formulation to the notion that the more

heterogeneous the individual consumers’ subjective discount rates are, the more

decreasingly impatient the representative consumer is. The measure of hetero-

geneity of discount rates is the convexity of the cumulant-generating function of

the (approximately wealth-weighted) distribution of discount rates. We have also

given two examples of parameterized families of distributions within which the

measures of heterogeneity are compared, of which one consists of Gamma distri-

butions and the other consists of Bernoulli distributions. We have applied these

results to the analysis of the term structure of interest rates in heterogeneous

economies. In particular, we have characterized the short-rate process in the ver-

sion of the CIR in a heterogeneous economy.

In the future research, the analysis of this paper should be extended to the

case where asset markets are incomplete. Since individual consumers have fewer

instruments to transfer purchasing power across time and states, the impact of

the heterogeneity of individual consumers’ impatience on the representative con-

sumer’s impatience will be less pronounced than in the case of complete markets.

To increase the relevance of the results of this paper, it is important to determine

exactly how much the impact is reduced.
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A Equilibrium foundation of our comparative stat-

ics exercises

In this appendix, we results two lemmas that are useful when assessing the changes

in the degree of heterogeneity of individual consumers’ impatience and in the

degree of the representative consumer’s decreasing impatience that are caused by

changes in individual consumers’ impatience or wealth levels (or bot).

Under an Arrow-Debreu equilibrium state-price density process π, define the

wealth share function θ : I → R++ by

θ(i) =

E

(∫ ∞

0

π(t)ei(t) dt

)
E

(∫ ∞

0

π(t)e(t) dt

) , (44)

then
∫
I
θ(i)dι(i) = 1. The following lemma relates the utility weights λ to the

wealth shares θ when all consumers have the logarithmic utility function. Since

the proof is straightforward, we omit it.

Lemma 1 Suppose that γ = 1. Let λ : I → R++. If the solution to the social

welfare maximization problem (2) coincides with the equilibrium allocation when

c = e, then λ is a scalar multiple of θρ.

This lemma can be used to conduct a comparative statics exercise on the

representative consumers’ discount factor functions in the following manner. First,

we arbitrarily fix the average endowment process e and the space (A,I , ι) of

consumers. Assume that all consumers have the logarithmic utility, that is, γ = 1.

Then, define the first economy by letting consumer i have the discount rate ρ1(i)

and the endowment process θ1(i)e. This defines two functions ρ1 : I → R++

and θ1 : I → R++. Since the individual consumers’ endowment processes are all

scalar multiples of the average endowment process, the wealth shares are given

by the function θ1, regardless of the equilibrium state-price deflator π. Thus the

representative consumer’s discount factor function f1 of the first economy is given

by

f1(t) =

∫
I

λ1(i) exp(−ρ1(i)t) dι(i),

where λ1 =
(∫

I
θ1ρ1 dι

)−1
θ1ρ1 : I → R++. Equivalently, if we define the proba-
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bility measure µ1 on B(R++) in the same way as in Section 3 using ρ1 and θ1,

then

f1(t) =

∫
R++

exp(−qt) dµ1(q).

If the discount rates and the endowment process of consumer i are changed into

ρ2(i) and θ2(i)e (while keeping the population (A,I , ι) and the average endow-

ment process e fixed and maintaining the logarithmic utility function), then we

can define λ2 : I → R++ and µ2 in the same manner but using ρ2 and θ2 in place

of ρ1 and θ1 to obtain the representative consumer’s discount factor function after

the change:

f2(t) =

∫
I

λ2(i) exp(−ρ2(i)t) dι(i) =
∫
R++

exp(−qt) dµ2(q).

Thus, it is relatively easy to keep track of the change in the individual consumers’

discount rates and wealth shares that induces, at equilibrium, a change in the

representative consumer’s discount factor function, from f1 to f2.

To gauge the applicability of this approach, it is important to know what kind

of restrictions are imposed on the state-price density process by assuming that it

is derived from aggregating the individual consumers’ heterogeneous impatience.

The following lemma shows that even when the individual consumers’ discount

rates and wealth shares are arbitrarily fixed and they are all assumed to have

the logarithmic utility function, the derivation does not impose any restriction on

the state-price density process, aside from its positive-valuedness, as long as the

average endowment process can be appropriately chosen.

Lemma 2 Let ρ : I → R++ and θ : I → R++. Assume that
∫
I
θ(i) dι(i) = 1.

Let π be a positive-valued adapted process. Then, there is an average endowment

process e such that π is the state-price density process at the Arrow-Debreu equilib-

rium of the exchange economy in which every consumer i ∈ I has the logarithmic

utility function, the discount rate ρ(i), and the endowment process θ(i)e.

Since θ(i)e is the endowment process of each consumer i ∈ I, all individual

consumers’ endowment processes are scalar multiples of the average endowment

process. The wealth shares evaluated at any equilibrium of this economy coincides

with θ.

Proof of Lemma 2 Define a discount factor function f by (4) where γ = 1 and

43



λ =
(∫

I
θρ dι

)−1
θρ. Define e = f/π. We prove that e has the properties stated in

the lemma.

For each i ∈ I, define the endowment process ei = θ(i)e and a consumption

process ci by

ci(t) =
λ(i) exp(−ρ(i)t)

f(t)
e(t)

Then
∫
I
ci(t) dι(i) = e(t). Thus the resource-feasibility condition is met. By

πe = d,

E

(∫ ∞

0

π(t)ci(t) dt

)
=

θ(i)∫
I
θρ dι

∫ ∞

0

ρ(i) exp(−ρ(i)t) dt = θ(i)∫
I
θρ dι

.

By Fubini’s theorem,

E

(∫ ∞

0

π(t)e(t) dt

)
=

∫ ∞

0

f(t) dt

=
1∫

I
θρ dι

∫
I

θ(i)

(∫ ∞

0

ρ(i) exp(−ρ(i)t) dt
)
dι(i)

=
1∫

I
θρ dι

∫
I

θ(i)dι(i) =
1∫

I
θρ dι

.

Thus, by the definition of ei, the budget constraint is met. Moreover,

1

π(t)
exp(−ρ(i)t) 1

ci(t)

=
1

π(t)
exp(−ρ(i)t) f(t)

λ(i) exp(−ρ(i)t)
1

e(t)
=

1

λ(i)
,

which is deterministic and independent of t. Since the utility function is loga-

rithmic, this implies that the utility maximization condition is met. Hence the

state-price density process π and the consumption processes (ci)i∈I constitute an

Arrow-Debreu equilibrium. ///
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B Proofs

Proof of Proposition 3 The cumulant-generating function K(·, α, β) is given

by

K(s, α, β) = ln

(
1

2
exp ((α + β)s) +

1

2
exp ((α− β)s)

)
.

Hence,

∂K

∂s
(s, α, β) =α + β

exp(βs)− exp(−βs)
exp(βs) + exp(−βs)

, (45)

∂2K

∂s2
(s, α, β) =

β2

(exp(βs) + exp(−βs))2

×
(
(exp(βs) + exp(−βs))2 − (exp(βs)− exp(−βs))2

)
=

(
2β

exp(βs) + exp(−βs)

)2

. (46)

Since

d

dβ

(
β

exp(βs) + exp(−βs)

)
=(exp(βs) + exp(−βs))−1 + β2 (exp(βs) + exp(−βs))−2 (exp(−βs)− exp(βs)) > 0

for every s ≤ 0, (46) is a strictly increasing function of β. Thus the single-

crossing property between the K(·, α1, β1) and K(·, α2, β3) and, hence, the single-

crossing property between r(·, α1, β1) and r(·, α2, β2) stipulated in Theorem 3 hold

if β1 > β2.

At any s < 0, the second term on the right-hand side of (45) is a strictly

decreasing function of β. Thus, if (α1 − α2)(β1 − β2) ≤ 0, then ∂K(·, α1, β1)/∂s

and ∂K(·, α2, β2)/∂s never intersect. Hence, if they do in fact intersect and satisfy

the single-crossing property of Theorem 3, then α1 > α2 and β1 > β2, that is, the

converse of the above claim holds. ///
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Proof of Proposition 4 By (45) and (46),

∂2K

∂s2
(s, α, β)

∂K

∂s
(s, α, β)

= 4β2 ((α + β) exp(βs) + (α− β) exp(−βs))−1 (exp(βs) + exp(−βs))−1

= 4β2 ((α + β) exp(2βs) + (α− β) exp(−2βs) + 2α)−1 . (47)

Differentiate the curvature (47) with respect to β, then we obtain

((α + β) exp(2βs) + (α− β) exp(−2βs) + 2α)−2

×
(
8β ((α + β) exp(2βs) + (α− β) exp(−2βs) + 2α)

− 4β2 ((1 + 2(α + β)s) exp(2βs)− (1 + 2(α− β)s) exp(−2βs))
)

=4β ((α + β) exp(2βs) + (α− β) exp(−2βs) + 2α)−2

× (((2α + β)− 2(α + β)βs) exp(2βs) + ((2α− β) + 2(α− β)βs) exp(−2βs) + 4α) .

(48)

We claim that (48) is strictly positive for every s ≤ 0 sufficiently close to 0 but

strictly negative for every sufficiently negative s. First, if s = 0, then (48) is equal

to 2β/α, which is strictly positive. Thus, (48) is strictly positive for every s ≤ 0

sufficiently close to 0. As for a sufficiently negative s, since

4β ((α + β) exp(2βs) + (α− β) exp(−2βs) + 2α)−2 > 0

for every s, it suffices to show that

((2α+β)−2(α+β)βs) exp(2βs)+((2α−β)+2(α−β)βs) exp(−2βs)+4α < 0 (49)

for every sufficiently large s. To do so, note that the first term of the left-hand

side of (49), ((2α+β)− 2(α+β)βs) exp(2βs), converges to zero as s→ −∞. The

second term, ((2α−β)+2(α−β)βs) exp(−2βs), diverges to −∞ as s→ −∞. The

third term, 4α, does not depend on s. Thus, the left-hand side of (49) diverges to

−∞ as s→ −∞, and, therefore, is strictly negative for every sufficiently negative

s. The proposition then follows from (14). ///

Proof of Theorem 4 The single-crossing property of instantaneous forward

rates follows from Theorem 3 and (29). As for yields to maturity, by (28) and a
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straightforward calculation,

∂Y1
∂t2

(t1, t2)−
∂Y1
∂t2

(t1, t2) =
1

t2 − t1
((r1(t2)− r2(t2))− (Y1(t1, t2)− Y2(t1, t2))) .

Thus, if Y1(t1, t2) = Y2(t1, t2), then

∂Y1
∂t2

(t1, t2)−
∂Y1
∂t2

(t1, t2) =
1

t2 − t1
(r1(t2)− r2(t2)) , (50)

and, again by (28), ∫ t2

t1

(r1(t)− r2(t)) dt = 0.

Thus, there exists a t0 ∈ (t1, t2) such that r1(t0) = r2(t0). By the single-crossing

property of the K ′
n and Theorem 2, the rn also have the single-crossing property.

Since t2 > t0, r1(t2) < r2(t2). By (50),

∂Y1
∂t2

(t1, t2)−
∂Y1
∂t2

(t1, t2) < 0.

///

Proof of Corollary 1

1. (40) follows from (33) and Theorem 7.

2. This part can be obtained from the first part by taking h1(x, t) and g1(x, t)

in the first part to be h1(t) + h(t)x and (g1(t) + g(t)x)k in the statement of

this part.

///

Proof of Proposition 5 The short-rate process (42) can be written in the form

of (41) by letting k = 1/2 and

h1(t) = k0η̄,

h(t) = −k0,

g1(t) = 0,

g(t) = k21.

As stated right after the statement of Proposition 5, the (wealth-weighted) distri-

bution of the individual consumers’ discount rates in the first economy coincides
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with the Gamma distribution with parameters (α, β) with ρ̄ = α/β. Since γ = 1

and α = ρ̄β,

r1(t)− r2(t) = − ρ̄β

t+ β
+ ρ̄ =

ρ̄t

t+ β
,

r′1(t)− r′2(t) =
ρ̄β

(t+ β)2
.

Thus,

h1(t) + h(t)(r1(t)− r2(t))− (r′1(t)− r′2(t)) = k0η̄ − k0
ρ̄t

t+ β
− ρ̄β

(t+ β)2
,

= k0

(
η̄ − ρ̄

(
t

t+ β
− β

k0(t+ β)2

))
,

g1(t) + g(t)(r1(t)− r2(t)) = k21
ρ̄t

t+ β
,

Thus, (43) follows from part 2 of Corollary 1. ///
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