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Abstract

We show that for every collection of increasing risk-sharing rules and for every increasing
and concave expected utility function, there exists a collection of increasing and concave
expected utility functions for which the given risk-sharing rules are efficient and the given
utility function coincides with the corresponding representative consumer’s utility function.
We then determine the smallest class of utility functions that contains not only all functions
exhibiting constant relative risk aversion but also all functions derivable as the representative
consumer’s utility function from such utility functions; and also fully characterize the efficient
risk-sharing rules in this class. Furthermore, we show that in a two-consumer economy,
assuming that the two have the same utility function imposes no additional restriction on
the efficient risk-sharing rules.
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1 Introduction

We consider an economy under uncertainty with a single consumption good in which all con-
sumers have expected utility functions with respect to a homogeneous probabilistic belief and,
should there be more than one consumption periods, a common discount rate, but their utility
functions can be different. As usual, we assume that all consumers prefer more to less and are
averse to risk, which means that their utility functions are increasing and concave. Then, a
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Pareto-efficient allocation can be described by a collection of efficient risk-sharing rules, one
for each consumer, and its supporting (or, decentralizing) price system can be represented by
the utility function for the representative consumer. Specifically, an individual consumer’s risk-
sharing rule is a deterministic function that maps each realized aggregate consumption level to
a consumption level for the individual consumer; and the representative consumer’s marginal
utility function serves as a pricing kernel, in the sense that the price of an asset is the sum of
all its future dividends multiplied by the stochastic marginal rates of substitution between the
current and future time at which the dividends is paid.

A couple of properties are well known for risk-sharing rules and the representative consumer’s
utility function. First, every individual consumer’s efficient risk-sharing rule is an increasing
function. This property is called the comonotonicity because it is equivalent to the property
that the consumers’ consumption levels are increasing functions of one another. Second, the
representative consumer’s utility function is an increasing and concave function of aggregate con-
sumption levels. This is equivalent to saying that the pricing kernel is a positive and decreasing
function of aggregate consumption levels. These properties hold for every efficient allocation
regardless of the distribution of stochastic aggregate endowments (or stochastic processes of
aggregate endowments) and coefficients of risk aversion of individual consumers.

The benchmark result for this paper (Theorem 2) is that the efficiency implies no property
other than the comonotonicity of the risk-sharing rules and the monotonicity and risk aversion
of the representative consumer’s utility function. More specifically, for every collection of in-
creasing risk-sharing rules, one for each consumer, and for every increasing and concave utility
function, there exists a collection of increasing and concave utility functions for which the given
risk-sharing rules are efficient and the given utility function coincides with the corresponding
representative consumer’s utility function. We also show that each individual consumer’s utility
function are uniquely determined up to scalar addition by the risk-sharing rules and the repre-
sentative consumer’s utility function. Versions of this result have been known in the literature,
and we compare our version with the exisiting ones.

In the rest of this paper, we investigate how robust the benchmark result is by restricting the
collection of individual consumers’ utility functions in two directions. One is to narrow down the
class of utility functions, by requiring that all consumers exhibit constant relative risk aversion
(CRRA), albeit at different levels. The other is to narrow down the class of distributions of
utility functions, by requiring that all consumers have the same utility function. The choice
of these two directions is motivated by the celebrated mutual fund theorem. The theorem
states that if all consumers exhibit CRRA, and if their utility functions are the same, then
the efficient risk-sharing rules are linear and the representative consumer has the same CRRA
utility function as the individual consumers. We would therefore like to investigate what kind of
risk-sharing rules and utility functions can possibly emerge if either one of the two assumptions
of the theorem is dispensed with.

First, we identify the smallest class of utility functions, which we denote by W , that contain
all utility functions exhibiting constant relative risk aversion and all utility functions that can
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be derived as the reprsentative consumer’s utility function from any collection of CRRA utility
functions (Propositions 2). The CRRA utility functions, such as power and log functions, have
been most commonly used in the literature, especially of macroeconomics and finance, but a
drawback of this class of utility functions is that even if all consumers in the economy have
CRRA utility functions, the representative consumer of the economy does not have any CRRA
utility function, unless all consumers’ utility functions are the same. By identifying the class W

of all utility functions derivable for the representative consumer from CRRA utility functions,
we identify the appropriate class of utility functions for asset pricing within the class of time-
additive expected utility functions.

In the class W , we also characterize (Proposition 3) the efficient risk-sharing rules in the
following two-step manner. First, we characterize, as the inverse of the sum of power functions,
the efficient risk-sharing rule in an economy populated by consumers having CRRA utility
functions. Second, we prove that in an economy of utility functions in W , each consumer’s
risk-sharing rule can be represented as a weighted sum of risk-sharing rules of consumers having
CRRA utility functions. This result extends the mutual fund theorem and generalizes some of
the results of Section 6 of Hara, Huang, and Kuzmics (2007). Based on this result, we also show
(Corollary 1) that if all consumers have CRRA utility functions, then the risk-sharing rules are
essentially uniquely determined by the utility function for the representative consumer. This
is consistent and yet ought to be contrasted with the benchmark theorem (Theorem 2): with
the restriction to CRRA utility functions, a pricing kernel not only narrows down the class of
compatible risk-sharing rules but essentially uniquely determines the risk-sharing rules.

Second, we consider the case in which all consumers have the same utility function. This case
is of special interest because the assumption of identical utility functions has been commonly
used under the name of ex ante homogeneity in the literature of dynamic macroeconomics, such
as Weil (1992) and Krussel and Smith (1998). An important property of efficient risk-sharing
rules in this case, which was exploited by Mazzocco and Saini (2006) in their hypothesis testing,
is that if one consumer consumes more than another at some aggregate consumption level, then
the former must necessarily consume more than the latter at every aggregate consumption level.
We show that in a two-consumer economy, the assumption of identical utility functions does not
impose any other additional restriction on the efficient risk-sharing rules. However, we show, by
means of an example, that if there are more than two consumers, then there are some additional
restrictions on the efficient-risk sharing rules.

These results are established for the case in which the feasible consumption levels are strictly
positive numbers, that is, the domain of a utility function is R++. We show in Section 7 that
some of these results can be generalized to the case in which the domain of a utility function
is an arbitrary open interval of R. Such generalizations are important, not just to satisfy
theoretical curiousity. For example, both Townsend (1994) and Ogaki and Zhang (2001) used
utility functions exhibiting hyperbolic absolute risk aversion in their tests of the full-insurance
hypothesis. The domain of utility functions of Townsend (1994) is R++ and hence the utility
functions must necessarily exhibit contant relative risk aversion, while the domains of utility
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functions of Ogaki and Zhang (2001) are open intervals of R and hence the utility functions
can exhibit decreasing and increasing relative risk aversion. The full-insurance hypothesis is
rejected by the former but not by the latter. The sensitivity of empirical results with respect
to the choice of domains suggests that our rsults should be generalized to utility functions of
arbitrary domains.

This paper is organized as following. Section 2 lays out the setting and formulates our
problem. Section 3 states the benchmark result (Theorem 2) and its relationship with exisitng
results. Section 4 states and proves the benchmark theorem in terms of marginal utility func-
tions, or the pricing kernel. Section 5 deals with the newly proposed class W , obtained from
aggregating CRRA utility functions. Section 6 deals with the case where the consumers have
the same utility function. Section ?? gives analytical examples of implications of the main
results. Section 7 shows how these results can be generalized to the case in which the domains
of utility functions are arbitrary. Section 8 gives concluding remarks and suggests directions of
future research.

2 Setting

There are I consumers, i ∈ {1, . . . , I}. Consumer i has a von-Neumann Morgenstern utility
function (also known as Bernoulli utility function) ui : R++ → R, where R++ is the set of
all real numbers strictly greater than 0. We assume that ui is of class Cr with r ≥ 2, r = ∞
(in which case, ui is infinitely many times differentiable), or r = ω (in which case, ui is real
analytic), and satisfies u′i(xi) > 0 and u′′i (xi) < 0 for every xi ∈ R++. We also assume that ui

satisfies the Inada condition, that is, u′i (xi) →∞ as xi → 0 and u′i (xi) → 0 as xi →∞.
Imagine that the consumers have common probabilistic beliefs on the uncertainty of the

economy and their preferences over state-contingent consumption plans ci are given by the
expected utility functions E

(
ui(ci)

)
. It is well known that each Pareto-efficient allocation of an

aggregate consumption plan c can be characterized as a solution to the welfare maximization
problem

max
(c1,...,cI)

∑
λiE

(
ui(ci)

)
,

subject to
∑

ci = c,
(1)

for some λ = (λ1, . . . , λI) ∈ RI
++. Since both the objective and constraint functions are separa-

ble state by state, we can reduce this problem to the following one, for each realized aggregate
consumption level x ∈ R++, involving realized consumption levels, not state-contingent con-
sumption plans:

max
(x1,...,xI)∈R++×···×R++

∑
λiui(xi),

subject to
∑

xi = x.
(2)

By the strict concavity and the Inada condition, for each x, there exists exactly one solution to
this problem. We now denote it by f(x) = (f1(x), . . . , fI(x)). Then the function f : R++ →
RI

++ is well defined. This is the risk-sharing rule, which maps each aggregate consumption level
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to a profile of the individual consumers’ consumption levels. By a slight abuse of terminology,
we will also refer to each coordinate function fi as a risk-sharing rule. It follows from the first-
order condition and the implicit function theorem that f is of class Cr−1, where ∞− 1 = ∞
and ω − 1 = ω by convention, and that f ′i(x) > 0 for every x ∈ R++, fi(x) → 0 as x → 0,
and fi(x) → ∞ as x → ∞, for every i. Define u : R++ → R as the value function of this
problem; that is, u(x) =

∑
i λiui (fi(x)). This is the representative consumer’s utility function.

By the envelope theorem, u′(x) = λiu
′
i(fi(x)) for every i and every x ∈ R++. This shows that

u′(x) > 0, u satisfies the Inada condition, and u′ is of class Cr−1. Hence u is of class Cr and
u′′(x) = λiu

′′
i (fi(x))f ′i(x) < 0. These properties have been well known in the literature.

The importance of the risk-sharing rule f and the representative consumer’s utility function u

lies in the following facts. Under appropriate integrability conditions, an allocation (c1, . . . , cI) of
state-contingent consumption plans is a Pareto-efficient allocation of an aggregate consumption
plan c if and only if (c1, . . . , cI) = (f1(c), . . . , fI(c)) for some λ ∈ RI

++. Moreover, then,
u′(c) is the unique pricing kernel, modulo strictly positive scalar multiplications, that supports
(decentralizes) c.

Let us make two remarks here. First, while we set up the original welfare maximization
problem (1) in a static model with a single consumption period and then reduced it to (2), we
can still reduce the original welfare maximization problem to (2) in a dynamic model of discrete
or continuous time if, in addition, the consumers share a common time-discount rate. The
details on how to do so are given in Hara (2006, Section 3). Second, the above characterization
of an efficient allocation of an aggregate consumption plan in terms of the original and reduced
welfare maximization problems ((1) and (2)) is valid not only in an exchange economy but also
in a production economy. The only difference between the two cases is that c must be equal to
the exogenously given aggregate endowment in an exchange economy, while it is endogenously
determined at equilibrium in a production economy.

The argument so far can be more succinctly stated as follows.
For each r ∈ {2, 3, . . . ,∞, ω}, let Ur be the set of all Cr functions u : R++ → R that satisfy

u′(R++) = R++ and u′′(R++) ⊆ −R++. For each I ∈ {1, 2, . . . } and each r ∈ {2, 3, . . . ,∞, ω},
let F I

r be the set of all Cr functions f = (f1, . . . , fI) : R++ → RI
++, with fi : R++ → R++ for

every i, such that fi(R++) = R++ and f ′i(R++) ⊆ R++ for every i, and
∑

i fi = χ, where χ

is the identity function on R++. To simplify exposition, we often write U for U2, and F I for
F I

1 .
Now consider the following welfare maximization problem:

max
(x1,...,xI)∈R++×···×R++

∑
ui(xi),

subject to
∑

xi = x.
(WMP)

This problem seems to be a special case of (2) as we obtain the former from the latter by letting
λi = 1 for every i. But in fact the former can deal with all the cases that the latter can deal with
because, even when λi 6= 1 for some i, (2) is nothing but (WMP) with λiui taking the place of
ui for each i. We say that f : R++ → RI

++ and u : R++ → R are derived from (u1, . . . , uI) via
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the welfare maximization problem (WMP for short) if f(x) is a solution to (WMP) for every
x ∈ R++ and u is the value function of (WMP).

What we have stated above can then be restated as follows:

Theorem 1 For every I ∈ {1, 2, . . . }, every r ∈ {2, 3, . . . ,∞, ω}, and every (u1, . . . , uI) ∈ U I
r ,

if f : R++ → RI
++ and u : R++ → R are derived from (u1, . . . , uI) via WMP, then f ∈ F I

r−1

and u ∈ Ur.

3 Benchmark Theorem

The benchmark theorem for this paper is the converse of Theorem 1:

Theorem 2 For every I ∈ {1, 2, . . . }, every r ∈ {2, 3, . . . ,∞, ω}, every f ∈ F I
r−1, and every

u ∈ Ur, there exists a (u1, . . . , uI) ∈ U I
r such that f and u are derived from (u1, . . . , uI) via

WMP. Moreover, for every (v1, . . . , vI) ∈ U I , if f and u are derived from (v1, . . . , vI) via
WMP, then ui − vi is constant for every i, that is, for every i, there exists a ki ∈ R such that
ui(xi)− vi(xi) = ki for every xi ∈ R++.

The first part of this theorem is the converse of Theorem 1, which establishes the existence
of a profile (u1, . . . , uI) ∈ U I

r of individual consumers’ utility functions that is consistent with
the given risk-sharing rule f and the given utility function u for the representative consumer.
The second part is the uniqueness of the profile up to scalar additions. There is no degree
of freedom with respect to scalar multiplication, as it would typically affect u when derived
via WMP. Since adding a constant to a utility function does not change the risk attitude it
represents, this theorem implies that f and u uniquely determines each individual consumer’s
risk attitudes. The proof of this theorem is given in the next section.

Let’s now compare this result with existing ones. First, Dana and Meilijson (2003) also con-
structed a collection of increasing and concave utility functions for which the given risk-sharing
rules are efficient and the given utility function coincides with the corresponding representa-
tive consumer’s utility function. There are two important properties for the utility functions
that they did not guarantee but we do here.1 One is the Inada condition, which says that the
marginal utility spans from zero to infinity. The other is the differentiability of arbitrary order.
Although the existence of an interior optimal consumption is crucial for many applications,
it would not be guaranteed without the Inada condition. The curvature of risk-sharing rules,
which can be used to check the validity of the mutual fund theorem, cannot even be defined
without four times differentiability of utility functions. Our proof method depends on the en-
velope theorem for the welfare maximization problem that determines the risk-sharing rules
and the utility function for the representative consumer. This method allows us to easily relate
them to the individual consumers’ utility functions and thus explore many applications.

[Mazzocco and Saini and Kubler here.]

1To do so, we need to impose some extra conditions on the given risk-sharing rules and the given utility
function for the representative consumer.

6



What can we learn from the benchmark theorem (Theorem 2)? First, it shows that the
comonotonicity of risk-sharing rules and the monotonicity and risk aversion of the representative
consumer’s utility function exhaust all the implications of efficiency, when the consumers have
expected utility functions with respect to a homogeneous probabilistic belief and a common
discount rate, but no other condition is imposed on their utility functions. The benchmark
theorem also shows the essential uniqueness of the individual utility functions once a collection
of risk-sharing rules and a utility function for the representative consumer are given. It should
be emphasized that this uniqueness result is no less important than the existence result, because
it allows us to pin down the nature of biases in the inference of individual utility functions when
a “wrong” utility function is postulated for the representative consumer.

Second, but perhaps more important to empirical studies on risk-sharing rules, since a
collection of risk-sharing rules and a utility function for the representative consumer can be given
independently of each other, either does not give any information on the other. In particular,
linearity the risk-sharing rules does not automatically imply that the consumers exhibit contant
relative risk aversion.

We now substantiate this claim by giving an example involving risk-sharing rules that are
linear, a conclusion of the mutual fund theorem. Let (θ1, . . . , θI) ∈ RI

++ satisfy
∑

i θi = 1.
Define f ∈ F I by letting fi(x) = θix for every i and x ∈ R++. Let u ∈ U and denote its
relative risk aversion by b : R++ → R++. By Theorem 2, there exists a (u1, . . . , uI) ∈ U I such
that f and u are derived from (u1, . . . , uI) via WMP. Denote the relative risk aversion of ui by
bi. By the first-order condition for the solution to WMP,

u′(x) = u′i (fi(x)) = u′i (θix) (3)

for every x ∈ R++. By differentiating both sides of (19) with respect to x, we obtain

u′′(x) = u′′i (θix)θi (4)

Divide both sides of (4) by their counterparts of (19) and multiply −x, then we obtain

b(x) = bi(θix) (5)

for every i and x ∈ R++. This equality shows that u exhibits constant relative risk aversion if
and only if every ui exhibits constant relative risk aversion. This is nothing but the case dealt
with by the mutual fund theorem. However, every ui exhibits decreasing relative risk aversion
whenever so does u, and every ui exhibits increasing relative risk aversion whenever so does
u. Since u can be arbitrarily chosen, this result implies that there are more than one profile
of individual consumers’ utility functions that are consistent with a given profile of linear risk-
sharing rules, and these profiles can consist of utility functions exhibiting decreasing relative
risk aversion or of utility functions exhibiting increasing relative risk aversion.

Friend and Blume (1975) used a data set on households’ wealth levels and asset allocation
to estimate the proportion of wealth invested into risky assets. The result depended on how to
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treat housing in the calculation of total wealth, but the choice between different treatments only
had quantitatively minor impact on their estimates. Their overall finding is that the proportion
invested into risky assets does not greatly depend on wealth level. Then they concluded that it is
reasonable to assume that the consumers (households) exhibit constant relative risk aversion. If
the consumers were to implement the consumption allocation resulting from linear risk-sharing
rules, then each must hold a fraction of the market portfolio, consisting of all assets in the
economy. Then the proportion of wealth they invest into each asset must be common across
them. In particular, the linearity of the risk-sharing rules implies that the proportion of the
risky assets in total wealth is independent of wealth levels, as empirically found by Friend and
Blume (1975). Our benchmark theorem, however, implies that the linear risk-sharing rules are
compatible with increasing or decreasing relative risk aversion for both the representative and
individual consumers. Friend and Blume’s (1975) conclusion that it is reasonable to assume
that they exhibit constant relative risk aversion is, therefore, not theoretically warranted.

A related strand of literature is on the empirical testing of the full insurance hypothesis.
Townsend (1994), Mace (1991), Cochrane (1991), and Kohara, Ohtake, and Saito (2002) con-
ducted tests for efficiency for the case, among others, in which all consumers (or households)
have equal and constant relative risk aversion. In this case, all the efficient risk-sharing rules are
linear and hence the hypothesis of an efficient allocation is rejected whenever the observed data
set is inconsistent with linearity. This, in fact, produces tests both for efficiency and functional
forms of utility functions togther, and the joint hypothesis is often rejected in the literature.

The tests of Ogaki and Zhang (2001) relaxed the assumption of the common constant relative
risk aversion to the assumption of hyperbolic absolute risk aversion with a common cautious-
ness,2 in order to accommodate the possibility of decreasing relative risk aversion. In this case,
the risk-sharing rules are affine, though not necessarily linear,3 and the hypothesis of an efficient
allocation is often not rejected. According to the benchmark theorem, however, this result in
no way supports decreasing relative risk aversion, as there are even utility functions exhibiting
increasing relative risk aversion that generate the observed affine risk-sharing rules.

Kubler (2003)
Altonji, Hayashi, and Kotlikoff?

4 Pricing Kernel

When it comes to proving the benchmark theorem (Theorem 2) and other results, it is more
convenient to deal with marginal utility functions, or pricing kernels, rather than the utility
functions themselves. We shall now provide an alternative formulation of the risk-sharing rules
and the representative consumer’s utility function in terms of marginal utility functions.

For each r ∈ {1, 2, . . . ,∞, ω}, let Pr be the set of all Cr functions p : R++ → R++ that
2The cautiousness is the derivative of the reciprocal of the absolute risk aversion. In the case of hyperbolic

absolute risk aversion, it is constant.
3In this paper, we distinguish affinity and linearity. The graph of a linear function must go through the origin,

while the graph of an affine function need not.
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satisfy p(R++) = R++ and p′(R++) ⊆ −R++. To simplify exposition, we often write P for
P1.

We say that f : R++ → RI
++ and p : R++ → R++ are derived from (p1, . . . , pI) via first-

order conditions (FOC for short) if p−1 =
∑

i p
−1
i and fi = p−1

i ◦ p for every i.4 It is easy to
check that for every I ∈ {1, 2, . . . } and every r ∈ {1, 2, . . . ,∞, ω}, if (p1, . . . , pI) ∈ PI

r , and f

and p are derived from (p1, . . . , pI) via FOC, then f ∈ F I
r and p ∈ Pr. The converse can also

be proved quite easily.

Theorem 3 For every I ∈ {1, 2, . . . }, every r ∈ {1, 2, . . . ,∞, ω}, every f ∈ F I
r , and every

p ∈ Pr, there exists a unique (p1, . . . , pI) ∈ PI
r such that f and p are derived from (p1, . . . , pI)

via FOC.

Proof of Theorem 3 For each i, define pi : R++ → R++ by pi = p ◦ f−1
i , then it is

easy to show that fi = p−1
i ◦ p for every i and pi ∈ Pr. Adding this over i, we see that∑

i

(
p−1

i ◦ p
)

=
(∑

i p
−1
i

) ◦ p = χ. Hence p−1 =
∑

i p
−1
i . The uniqueness follows from the fact

that p = pi ◦ fi if and only if pi = p ◦ f−1
i . ///

The relationship between Pr and Ur+1 is straightforward: if u ∈ Ur+1, then u′ ∈ Pr.
Conversely, if p ∈ Pr, then any particular integral of p belongs to Ur+1. The relationship
between WMP and FOC is as follows.

Lemma 1 Let I ∈ {1, 2, . . . } and r ∈ {2, 3, . . . ,∞, ω}.

1. Let (u1, . . . , uI) ∈ Ur, u ∈ Ur, and f ∈ F I
r−1. If f and u are derived from (u1, . . . , uI)

via WMP, then f and u′ are derived from (u′1, . . . , u
′
I) via FOC.

2. Let (p1, . . . , pI) ∈ Pr−1, p ∈ Pr−1, and f ∈ F I
r−1. If f and p are derived from (p1, . . . , pI)

via FOC, and if u is a particular integral of p, then for every i there is a particular integral
ui of pi such that f and u are derived from (u1, . . . , uI) via WMP.

Proof of Lemma 1 1. If f and u are derived from (u1, . . . , uI) via WMP, then u′ = u′i ◦ fi by
the envelope theorem, and hence fi = (u′i)

−1 ◦ u′. Moreover, since
∑

i fi =
∑

i

(
(u′i)

−1 ◦ u′
)

=(∑
i (u

′
i)
−1

)
◦ u′ is the identity function,

∑
i (u

′
i)
−1 = (u′)−1. Therefore, f and u′ are derived

from (u′1, . . . , u
′
I) via FOC.

2. Suppose that f and p are derived from (p1, . . . , pI) via FOC. For each i, let ûi be a
particular integral of pi. Then fi = (û′i)

−1 ◦ p and hence p(x) = û′1(f1(x)) = · · · = û′I(fI(x)) for
every x ∈ R++, which implies that f gives the solution to (WMP). Moreover, its value function
is equal to one of its particular integral of p, which we denote by u. If u(x)−∑

i ûi(fi(x)) = 0,
then we can complete the proof by letting ui = ûi. If not, we let δ = u(x) −∑

i ûi(fi(x)) and
define ui by letting ui(xi) = ûi(xi)+δ/I. Then f and u are derived from (u1, . . . , uI) via WMP.
///

4These relations were used in Karatzas and Shreve (1998, Sections 4.4 and 4.5) for the analysis of utility
maximization and equilibrium.
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Theorem 2 can now be proved based on Theorem 3 and Lemma 1.

Proof of Theorem 2 Let f ∈ F I
r−1 and u ∈ Ur. Then u′ ∈ Pr−1 and hence, by Theorem

3, there exists a unique (p1, . . . , pI) ∈ PI
r−1 from which f and u′ are derived via FOC. Thus,

by part 2 of Lemma 1, for each i, there is a particular integral ui ∈ Ur such that f and u are
derived from (u1, . . . , uI) via WMP.

As for the uniqueness up to scalar addition, assume that f and u are derived also from
(v1, . . . , vI) ∈ U I via WMP. Then, by part 1 of Lemma 1, f and u′ are derived also from
(v′1, . . . , v

′
I) ∈ PI via FOC. By the uniqueness result of Theorem 3, v′i = pi = u′i for every i.

Thus ui − vi is constant for every i. ///

5 Constant Relative Risk Aversion

In this section, we consider the problem on what kind of restrictions will be imposed on the
efficient risk-sharing rules and the representative consumer’s utility function by assuming that
all consumers exhibit constant relative risk aversion.

Formally, for a utility function u ∈ U , the relative risk aversion b : R++ → R++ is defined
by b(x) = −u′′(x)x/u′(x) for every x ∈ R++. For a marginal utility function p ∈ P, the relative
risk aversion b : R++ → R++ is defined by b(x) = −p′(x)x/p(x) for every x ∈ R++. If b is
constantly equal to a β ∈ R++, then there exist a λ ∈ R++ and a γ ∈ R++ such that

u(x) =





λ log x + γ if β = 1,

λ
x1−β − 1

1− β
+ γ otherwise,

or equivalently,
p(x) = λx−β

for every x ∈ R++. We denote the set of all these u ∈ U by V , and the set of all these p ∈ P

by Q.
Let I ∈ {1, 2, . . . } and for each i = 1, . . . , I, let pi ∈ Q satisfy

pi(xi) = λix
−βi
i

for every xi ∈ R++. If p ∈ P is derived from (p1, . . . , pI) via FOC, then

p−1(z) =
I∑

i=1

p−1
i (z) =

I∑

i=1

λ
1/βi

i z−1/βi

for every z ∈ R++. So we denote by R the set of all p ∈ P for which there exist an N ∈
{1, 2, . . . }, a (c1, . . . , cN ) ∈ RN

++, and a (s1, . . . , sN ) ∈ RN
++ such that

p−1(z) =
N∑

n=1

cnz−sn (6)

10



for every z ∈ R++. Then R ⊃ Q, and if (p1, . . . , pI) ∈ QI and p is derived from (p1, . . . , pI)
via FOC, then p ∈ R. It can also be shown that if (p1, . . . , pI) ∈ RI and p is derived from
(p1, . . . , pI) via FOC, then p ∈ R. That is, the set R is closed under aggregation. We can
furthermore establish the following result.

Proposition 1 The set R is the smallest subset of P that includes Q and is closed under
aggregation.

Proof of Proposition 1 It remains to show that for every p ∈ R, there exist an I ∈ {1, 2, . . . }
and a (p1, . . . , pI) ∈ QI such that p is derived from (p1, . . . , pI) via FOC. Indeed, if p ∈ R is
defined by (6), then let I = N and, for each n, let pn ∈ Q be defined by pn(xn) = c

1/sn
n x

−1/sn
n

for every xn ∈ R++. Then p−1 =
∑N

n=1 p−1
n . ///

Denote by W the set of all u ∈ U such that u′ ∈ R. Then we can analogously establish the
following result

Proposition 2 The set W is the smallest subset of U that includes V and is closed under
aggregation.

The set W is nothing but the set of all utility functions u ∈ U for which there exist an
N ∈ {1, 2, . . . }, a (c1, . . . , cN ) ∈ RN

++, and a (s1, . . . , sN ) ∈ RN
++ such that

(
u′

)−1 (z) =
N∑

n=1

cnz−sn (7)

for every z ∈ R++. The set W is a more reasonable class of utility functions for the represen-
tative consumer than V , for the following reasons. First, it includes V , so that it is sufficiently
rich to contain all utility functions exhibiting constant relative risk aversion. Second, it is closed
under aggregation, so that the utility functions derived from any utility functions in this class
via WMP also belong to this class. This is the property that is missed in the class V of utility
functions exhibiting constant relative risk aversion. Third, this class is the smallest class having
these two properties, so that it is the most tractable class of utility functions that are closed
under aggregation and admit all levels of constant relative risk aversion.

Next, we characterize the efficient risk-sharing rules when all consumers’ marginal utility
functions belong to R (that is, when their utility functions belong to W ). To do so, note first
that since there are finitely many consumers and each marginal utility function in R is the
sum of finitely many power functions, if (p1, . . . , pI) ∈ RI , then there are an N ∈ {1, 2, . . . }, a
(s1, . . . , sN ) ∈ RN

++, and, for each i, a (c1i, . . . , cNi) ∈ RN
+ such that

p−1
i (z) =

N∑

n=1

cniz
−sn (8)

for every i and z ∈ R++. Moreover, we can choose them so that
∑

i cni > 0 for every n and
sn 6= sm whenever n 6= m. Keeping this fact in mind, we can state our characterization result

11



as follows.

Proposition 3 Let I ∈ {1, 2, . . . }. Let (p1, . . . , pI) ∈ RI be given by (8) and f = (f1, . . . , fI) ∈
F I be derived from (p1, . . . , pI) via FOC. For each n, write cn =

∑
i cni and define gn : R++ →

R++ by

g−1
n (z) =

N∑

m=1

cm

c
sm/sn
n

zsm/sn (9)

for every z ∈ R++. Then

fi(x) =
N∑

n=1

cni

cn
gn(x) (10)

for every i and every x ∈ R++.

This proposition can be best understood by first looking at the case in which s1, . . . , sN

are all distinct, I = N , and cni > 0 if and only if n = i. This means that all consumers
exhibit constant relative risk aversion but the levels are all distinct. Then cni/cn is equal to 1
if n = i and 0 otherwise. Hence fi = gi for every i. This means that g1, . . . , gN are the efficient
risk-sharing rules in the elementary case in which all consumers exhibit constant, yet distinct,
levels of relative risk aversion. Then, in the general case in which the consumers’ marginal
utility functions do not exhibit constant relative risk aversion, (23) shows that the efficient
risk-sharing rules are weighted sums of the efficient risk-sharing rules in the elementary case.
Note, however, that even if two consumers have the same risk attitude, their risk-sharing rules
need not be any scalar multiples of each other. To see this point, suppose that for some two
consumers i and j, there exists a µ 6= 1 such that pi(xi) = µpj(xj) for every xi ∈ R++. Then
p−1

i (z) = p−1
j (z/µ) and hence ∑

n

cniz
−sn =

∑
n

cnj

µsn
z−sn

for every z ∈ R++. Thus cni = cnj/µsn for every n. Since µ 6= 1, this implies that the vector
of weights of fi, (c1i/c1, . . . , cNi/cN ), is not a scalar multiple of the vector of weights of fj ,
(c1j/c1, . . . , cNj/cN ). Since, as can be easily verified, any of g1, . . . , gN is not a scalar multiple
of another, we can conclude that fi is not a scalar multiple of fj .

Proof of Proposition 3 Define p ∈ R by p−1 =
∑

i p
−1
i . For each n, define qn ∈ Q by

q−1
n (z) = cnz−sn . Then g = (g1, . . . , gN ) and p are derived from (q1, . . . , qN ) via FOC. Indeed,

p−1(z) =
N∑

n=1

cnz−sn =
N∑

n=1

q−1
n (z)

and

p−1 (qn(z)) =
N∑

m=1

cm

((
z

cn

)−1/sn
)−sm

= g−1
n (z)
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for every z ∈ R++, implying that gn = q−1
n ◦ p. Then note that

p−1
i =

∑
n

cni

cn
q−1
n .

Since fi = p−1
i ◦ p,

fi(x) = p−1
i (p(x)) =

∑
n

cni

cn
q−1
n (p(x)) =

∑
n

cni

cn
gn(x)

for every i and x ∈ R++. ///

An important corollary of this proposition is that if the economy is populated by consumers
exhibiting constant relative risk aversion, then the marginal utility function for the representa-
tive consumer essentially uniquely determines the risk-sharing rules.

Corollary 1 Let I ∈ {1, 2, . . . } and (p1, . . . , pI) ∈ QI , with the constant relative risk aversion
(β1, . . . , βI). Let f = (f1, . . . , fI) ∈ F I and p ∈ R be derived from (p1, . . . , pI) via FOC. Let
p be written as (6) and g ∈ FN be defined by (22). Assume that sn 6= sm whenever n 6= m.
Then:

1. {β1, . . . , βI} = {1/s1, . . . , 1/sN}.

2. For every i = 1, . . . , I, let n = 1, . . . , N satisfy βi = 1/sn, then there exists a θi ∈ (0, 1]
such that fi = θign.

Part 1 of this corollary claims that once we identify the pricing kernel, or the representative
consumer’s marginal utility function, we can completely recover all individual consumers’ rela-
tive risk aversion. Part 2 then claims that their risk-sharing rules are determined uniquely up to
scalar multiplication. This is in stark contrast in the case of general utility functions (Theorems
2 and 3), where the representative consumer’s (marginal) utility function in no way restricts the
shape of the efficient risk-sharing rules. Part 2 also establishes a mutual fund theorem among
consumers with the same level of constant relative risk aversion: if consumers have the same
level of constant relative risk aversion, then their risk-sharing rules are scalar multiples of the
same gn, and hence scalar multiples of one another.

Proof of Corollary 1 Let pi(xi) = λix
−βi
i for each i. Since p is derived from (p1, . . . , pI) via

FOC,

p−1(z) =
I∑

i=1

p−1
i (z) =

I∑

i=1

λ
1/βi

i z−1/βi . (11)

Since this is equal to (6) for every z ∈ R++, it is easy to show by induction on N that
{β1, . . . , βI} = {1/s1, . . . , 1/sN}, which establishes part 1, and

cn =
∑

{i|βi=1/sn}
λ

1/βi

i =
∑

{i|βi=1/sn}
λsn

i (12)
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for every n. For each i and n, define cni = λsn
i /cn ∈ (0, 1] if βi = 1/sn and cni = 0 otherwise.

Then (8) hold for this choice of (c1i, . . . , cNi) and part 2 follows from Proposition 3. ///

In the macroeconomics literature, the aggregation property often refers to the property that
the equilibrium asset prices are not affected by any change in the wealth distribution among
consumers as long as the mean is unaffected. The proof of Corollary 1 shows how the aggregation
property fails in an economy populated by consumers with differing levels of constant relative
risk aversion. In the individual consumers’ marginal utility functions pi(xi) = λix

−βi
i , the

coefficients λi roughly represent their wealth shares in the economy. If there is a transfer in
wealth from one consumer to another of the same level of constant relative risk aversion, then
the value of cn in (12) is unchanged and the pricing kernel p is also unchanged, satisfying the
aggregation property, as can be seen by (11). On the other hand, if the transfer is between
two consumers of differing levels of constant relative risk aversion, then (12) shows that p is
changed, violating the aggregation property. Given that the mutual fund theorem fails among
consumers with differing levels of constant relative risk aversion, it is perhaps not surprising
that the aggregation property fails as well. The surprising part of Corollary 1, however, is that
any transfer between two consumers of differing levels of constant relative risk aversion must
necessarily change the pricing kernel p (and hence the equilibrium asset prices) so that if p is
identified, then the wealth distribution among consumers of differing levels of constant relative
risk aversion can be uniquely determined.

For future references, we restate Proposition 3 and Corollary 1 in terms of utility functions.

Proposition 4 Let I ∈ {1, 2, . . . }. Let (u1, . . . , uI) ∈ W I be given by

(
u′i

)−1 (z) =
∑

n

cniz
−sn

for each i, and f = (f1, . . . , fI) ∈ F I be derived from (u1, . . . , uI) via WMP. For each n, write
cn =

∑
i cni and define gn : R++ → R++ by

g−1
n (z) =

N∑

m=1

cm

c
sm/sn
n

zsm/sn (13)

for every z ∈ R++. Then

fi(x) =
N∑

n=1

cni

cn
gn(x) (14)

for every i and every x ∈ R++.

Corollary 2 Let I ∈ {1, 2, . . . } and (u1, . . . , uI) ∈ V I , with the constant relative risk aversion
(β1, . . . , βI). Let f = (f1, . . . , fI) ∈ F I and u ∈ W be derived from (u1, . . . , uI) via WMP.
Write u as (

u′
)−1 (z) =

∑
n

cnz−sn , (15)

14



where sn 6= sm whenever n 6= m, and define g = (g1, . . . , gN ) ∈ FN by (22). Then:

1. {β1, . . . , βI} = {1/s1, . . . , 1/sN}.

2. For every i = 1, . . . , I, let n = 1, . . . , N satisfy βi = 1/sn, then there exists a θi ∈ (0, 1]
such that fi(x) = θign(x) for every x ∈ R++.

In concluding this section, we give an application of Corollary 2. Suppose that an economy
is populated by I consumers exhibiting constant relative risk aversion (β1, . . . , βI). Assume
that it is not true that β1 = · · · = βI . Let f = (f1, . . . , fI) be efficient risk-sharing rules
and û be the utility function for a representative consumer in this economy. Then (û′)−1

can be written as the right-hand side of (15). Since the relative risk aversion is nothing but
the elasticity of û′ multiplied by −1, Corollary 6 in the Appendix implies that it is strictly
decreasing from 1/ (mini 1/βi) = maxβi to 1/ (maxi 1/βi) = minβi. Denote the elasticity
of fi by ei : R++ → R, that is, ei(x) = f ′i(x)x/fi(x). Thus, by Corollary 4, ei is strictly
decreasing, from 1/minj(βi/βj) = (maxj βj) /βi to 1/maxj(βi/βj) = (minj βj) /βi. A closely
related analysis was already given in Section 7 of HHK.

Now let u ∈ U exhibit constant relative risk aversion β, as would be concluded by the
mutual fund theorem were all consumers to have equal constant relative risk aversion. By
Theorem 2, there exists a (u1, . . . , uI) ∈ U such that f and u are derived from (u1, . . . , uI) via
WMP. It follows from (2) in Lemma 1 of HHK that

bi (fi(x)) =
β

ei(x)

where bi is the relative risk aversion of ui. Since ei is strictly decreasing from (maxj βj) /βi to
(minj βj) /βi, this shows that bi is strictly increasing from ββi/ (maxj βj) to ββi/ (minj βj).

The finding of this application of Corollary 2 can be paraphrased as follows. We take up an
economy in which all consumers exhibit constant relative risk aversion, albeit at different levels.
We find that the elasticities of the efficient risk-sharing rules are strictly decreasing and that
the representative consumer exhibits strictly decreasing relative risk aversion. We then assume,
contrary to this fact, that the representative consumer exhibits constant relative risk aversion, as
is often done in macroeconomics. Then, to be consistent with these nonlinear risk-sharing rules,
all consumers must exhibit strictly increasing relative risk aversion. A rough but easy reason for
this goes as follows: The risk-sharing rules are nonlinear only if the individual consumers have
different levels of relative risk aversion. According to Proposition 6 of HHK, this heterogeneity
would then lead to strictly decreasing relative risk aversion for the representative consumer
were they to exhibit nonincreasing relative risk aversion. Therefore, whenever we postulate
that the representative consumer exhibits constant relative risk aversion in the presence of
heterogeneous risk attitudes, in order to cancel out the tendency for strictly decreasing relative
risk aversion arising from the heterogeneity, the individual consumers must necessarily exhibit
strictly increasing relative risk aversion.
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6 Identical Risk Attitudes

In this section, we consider what kind of restriction can be imposed on the efficient risk-sharing
rules and the represetative consumer’s utility function when all consumers have the same risk
attitudes.

Let (u1, . . . , uI) ∈ U I . Then, as is well known from expected utility theory, all consumers
have the same risk attitudes if and only if the ui are affine transformations of one another.
Since the constant terms do not matter to the solution to WMP, we can assum without loss
of generality that there are a û ∈ U and a (λ1, . . . , λI) ∈ RI

++ such that (u1, . . . , uI) =
(λ1û, . . . , λI û). It is then easy to check, using the first-order condition, that for any i and j,
if fi(x) > fj(x) for some x ∈ R++, then fi(x) > fj(x) for every x ∈ R++. That is, for any
two consumers, they always enjoy the same consumption level, or one always enjoys a higher
consumption level than the other.5

Using a set of panel data of villages in India and Paskitan, Mazzocco and Saini (2006) showed
that for most pairs of consumers (households), either one consumes more at some ggregate
consumption level, but consumes less at another. This result implies that if the consumers have
the time-additive expected utility functions with comon beliefs and if the allocations attained
are efficient, then their risk attitudes must be different.

6.1 Two Consumers

We saw that for any two consumers, they always enjoy the same consumption level, or one
always enjoys a higher consumption level than the other. We now show that this property is
the only property that generally holds with identical risk attitudes in a two-consumer economy.

Theorem 4 Let f = (f1, f2) ∈ F 2 satisfy f1(x) < f2(x) for every x ∈ R++, then there exists
a û ∈ U and (λ1, λ2) ∈ R2

++ such that λ1 < λ2 and f is derived from (λ1û, λ2û) via WMP.

Proof of Theorem 4 Define g : R++ → R++ by g = f2◦f−1
1 , then g is of C1, g(R++) = R++,

and g′(R++) ⊆ R++. Moreover, g > χ. Then let x0 ∈ R++ and, for each positive integer n,
define inductively xn ∈ R++ by letting xn = g(xn−1) and x−n = g−1

(
x−(n−1)

)
. This is

equivalent to letting xn = g(xn−1) for each (positive or negative) integer n. Then it is easy to
check that xn is strictly increasing in n, and that xn →∞ and x−n → 0 as n →∞.

Let h : [x0, x1) → R++ be any continuous function such that

lim
z↑x1

h(z) =
h(x0)
g′(x0)

.

Such an h in fact exists. For example, we can define

h(z) =

1
g′(x0)

− 1

x1 − x0
(z − x0) + 1.

5On the other hand, if all consumers always enjoy the same consumption level, that is, fi = (1/I)χ for every
i, then f = (f1, . . . , fI) can be derived via WMP from the profile of any common utility function, (û, . . . , û).
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Then define a : R++ → R++ by a(z) = h(z) for every z ∈ [x0, x1), and then inductively

a(z) =
a

(
g−1(z)

)

g′ (g−1(z))
(16)

for every z ∈ [xn, xn+1) with n ≥ 1 (where g−1(z) ∈ [xn−1, xn)); and

a(z) = a (g(z)) g′(z) (17)

for every z ∈ [
x−n, x−(n−1)

)
with n ≥ 1 (where g(z) ∈ [

x−(n−1), x−(n−2)

)
). We prove that a is

continuous. By the construction of a and the continuity of h and g′, a is continuous on every
open interval (xn, xn+1) and

(
x−n, x−(n−1)

)
. At x0, every xn, and every x−n, a is continuous

from right. It thus remains to prove that a is continuous from left at these points. We shall do
this inductively.

For the continuity at x0,

lim
z↑x0

a(z) = lim
z↑x0

(
h(g(z))g′(z)

)
=

(
lim
z↑x1

h(z)
) (

lim
z↑x0

g′ (z)
)

=
h(x0)
g′(x0)

g′(x0) = a(x0).

Hence a is continuous from left at x0. Let n ≥ 1. Suppose that a is continuous from left at
xn−1. Then

lim
z↑xn

a(z) = lim
z↑xn

a
(
g−1(z)

)

g′ (g−1(z))
= lim

z↑xn−1

a (z)
g′ (z)

=
a (xn−1)
g′ (xn−1)

= a(xn).

Thus a is continuous from left at xn. Suppose that a is continuous from left at x−(n−1). Then

lim
z↑x−n

a(z) = lim
z↑x−n

(
a (g(z)) g′(z)

)
=

(
lim

z↑x−(n−1)

a(z)
)(

lim
z↑x−n

g′(z)
)

= a
(
x−(n−1)

)
g′ (x−n) = a(x−n).

Thus a is continuous from left at x−n. We can therefore conclude that a : R++ → R++ is
continuous on the entire domain.

Define û : R++ → R by

û(x) =
∫ x

x0

exp
(
−

∫ y

x0

a(z) dz

)
dy. (18)

Since a is continuous, û is of C2. Moreover,

û′(x) = exp
(
−

∫ x

x0

a(z) dz

)
= exp

(∫ x0

x
a(z) dz

)
, (19)

û′′(x) = −û′(x)a(x).

Thus û′(x) > 0 > û′′(x) for every x ∈ R++. To prove that û ∈ U , therefore, it suffices to show
that û′(x) → 0 as x → ∞ and û′(x) → ∞ as x → 0. By integration by substitution, for every
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n ≥ 1,

∫ xn+1

xn

a(z) dz =
∫ g(xn)

g(xn−1)

a
(
g−1(z)

)

g′ (g−1(z))
dz =

∫ g(xn)

g(xn−1)
a

(
g−1(z)

) (
g−1

)′ (z) dz =
∫ xn

xn−1

a(z) dz

∫ x−(n−1)

x−n

a(z) dz =
∫ g−1(x−(n−2))

g−1(x−(n−1))
a (g(z)) g′(z) dz =

∫ x−(n−2)

x−(n−1)

a(z) dz.

Thus
∫ xn

x0

a(z) dz =
∫ x0

x−n

a(z) dz = n

∫ x1

x0

a(z) dz.

Hence
∫ x

x0

a(z) dz →∞ as x →∞,

∫ x0

x
a(z) dz →∞ as x → 0.

By (19) û′(x) → 0 as x →∞ and û′(x) →∞ as x → 0. Thus û ∈ U .
To complete the proof of this theorem, it suffices to show that there exists a µ > 1 such that

û′ (f1(x)) = µû′ (f2(x)) for every x ∈ R++. This is equivalent to

û′ (x) = µû′ (g(x)) (20)

for every x ∈ R++, which we shall prove.
Note first that the definition of (16) in fact implies that the equality of (17) holds for every

z ∈ R++, regardless of whether it is larger or smaller than x0. Thus, for every x ∈ R++,

∫ x

x0

a(z) dz =
∫ x

x0

a(g(z))g′(z) dz =
∫ g(x)

x1

a(z) dz.

Hence

exp
(
−

∫ x

x0

a(z) dz

)
= exp

(
−

∫ g(x)

x1

a(z) dz

)
.

By (19),

û′(x) = û′ (g(x)) exp
(∫ x1

x0

a(z) dz

)
.

Since exp
(∫ x1

x0
a(z) dz

)
> 1, this completes the proof. ///

[Give restrictions on u.]

6.2 More Than Two Consumers

If there are more than two consumers in the economy, then there are more restrictions on the
efficient risk-sharing rules than the condition that for any pair of two consumers, either the two
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always enjoy the same consumption level or one always consumes more than the other. We now
present such a restriction. For a function g defined on R++ into itself and for a positive integer
n, we denote by gn the n-times composite function g ◦ · · · ◦ g︸ ︷︷ ︸

n times

.

Proposition 5 Let f = (f1, . . . , fI) ∈ F I be derived from (u1, . . . , uI) via WMP for which the
ui are affine transformations of one another. Then, for all i and j, for all positive integers
m and n, and for all z ∈ R++, if

(
fi ◦ f−1

1

)n (z) =
(
fj ◦ f−1

1

)m (z), then
((

fi ◦ f−1
1

)n
)′

(z) =
((

fj ◦ f−1
1

)m
)′

(z).

Proof of Proposition 5 Let û ∈ U be such that f is derived from (λ1û, . . . , λI û) via WMP
for some (λ1, . . . , λI) ∈ RI

++. Then let a = −û′′/û′, the absolute risk aversion of û. For each
i, write gi for fi ◦ f−1

1 . Then for every i and every z ∈ R++, a(z) = a(gi(z))g′i(z). By an
induction argument, we can show that for every i, every z ∈ R++, and every positive integer
n, a(z) = a (gn

i (z)) (gn
i )′ (z). Thus, for all i and j, for all positive integers m and n, and for all

z ∈ R++, a (gn
i (z)) (gn

i )′ (z) = a
(
gm
j (z)

)(
gm
j

)′
(z). The proposition then follows. ///

We now give an example of a risk-sharing rule of a three-consumer economy such that for
any pair of two consumers, one always consumes more than the other and yet it cannot be
efficient if they all have the same risk attitudes.

Example 1 For each i = 1, 2, 3, define gi : R++ → R++ by

g1(z) = z,

g2(z) = z + z2,

g3(z) = z + 2z2 + z3 + 2z4.

Then g′i > 0 and gi is onto for every i. Thus gi has the inverse function for every i. Moreover,
the sum of the three functions, g1 + g2 + g3, has the inverse function as well. So, for each i,
define fi : R++ → R++ by fi = gi ◦ (g1 + g2 + g3)

−1.

Proposition 6 In Example 1,

1. f = (f1, f2, f3) ∈ F 3.

2. f1(x) < f2(x) < f3(x) for every x ∈ R++.

3. There is no (u1, u2, u3) such that the ui are affine transformations of one another and f

is derived from (u1, u2, u3) via WMP.

Proof of Proposition 6 1. Since gi is of C1 and g′i > 0, fi is also of C1 for every i. Since
both gi and g1 + g2 + g3 have inverse functions, so does fi and, in particular fi (R++) = R++.
Finally, f1 + f2 + f3 = (g1 + g2 + g3) ◦ (g1 + g2 + g3)

−1 = χ. Thus f ∈ F 3.
2. This follows from g1(x) < g2(x) < g3(z) for every z ∈ R++.
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3. Note first that fi ◦ f−1
1 = gi for every i. We prove that g2

2(1) = g3(1) and yet
(
g2
2

)′ (1) 6=
g′3(1). By Proposition 5, this establishes part 3. For this purpose, note that

g2
2(z) =

(
z + z2

)
+

(
z + z2

)2 = z + 2z2 + 2z3 + z4

for every z ∈ R++. Thus g2
2(1) = 6 = g3(1). On the other hand,

(
g2
2

)′ (z) = 1 + 4z + 6z2 + 4z3,

g′3(z) = 1 + 4z + 3z2 + 8z3

for every z ∈ R++. Thus
(
g2
2

)′ (1) = 15 6= 16 = g′3(1). ///

7 General Domains

In this section we state, without proof, the generalizations of the concepts and results in the
preceding sections to the case where the domain of the consumers’ utility functions need not be
R++. Although R++ is the most natural set of possible consumption levels, it is important to
accommodate other sets as well. For example, if a utility function satisfies the Inada condition
and also exhibits constant absolute risk aversion, its domain must necessarily be R; if a utility
function is quadratic and satisfies the Inada condition, its domain must necessarily be (−∞, d)
for some d < ∞; if a utility function satisfies the Inada condition and also exhibits hyperbolic
absolute risk aversion and strictly decreasing relative risk aversion, its domain must necessarily
be (d,∞) for some d > 0; and if a utility function satisfies the Inada condition and also exhibits
hyperbolic absolute risk aversion and strictly increasing relative risk aversion, its domain must
necessarily be (d,∞) for some d < 0. The last two cases are especially of empirical relevance,
as exemplified by Ogaki and Zhang (2001).

So we let D be the set of all open intervals in R. For each D ∈ D and r ∈ {2, 3, . . . ,∞, ω},
let UD,r be the set of all Cr functions u : D → R that satisfy such that u′(D) = R++ and
u′′(D) ⊆ −R++. For each I ∈ {1, 2, . . . }, (D1, . . . , DI) ∈ DI , and r ∈ {2, 3, . . . ,∞, ω}, let
FD1×···×DI

r be the set of all Cr functions f = (f1, . . . , fI) :
∑

i Di → D1 × · · · × DI , with
fi :

∑
j Dj → Di for every i, such that fi

(∑
j Dj

)
= Di and f ′i

(∑
j Dj

)
⊆ R++ for every i,

and
∑

i fi(x) = x for every x ∈ ∑
i Di. To simplify exposition, we often write UD for UD,2, and

FD1×···×DI for FD1×···×DI
1 .

We say that f :
∑

i Di → D1 × · · · ×DI and u :
∑

i Di → R are derived from (u1, . . . , uI)
via the welfare maximization problem (WMP for short) if f(x) is a solution to (WMP) for every
x ∈ R++ and u is the value function of (WMP), where the choice variables (x1, . . . , xI) are now
in D1 × · · · ×DI .

To avoid lengthy exposition, we shall present generalizations of some previoius results dealing
with utility functions but not with marginal utility functions (pricing kernels). First, Theorems
1 and 2 can be generalized to the following ones.

Theorem 5 For every I ∈ {1, 2, . . . }, every (D1, . . . , DI) ∈ DI , every r ∈ {2, 3, . . . ,∞, ω},
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and every (u1, . . . , uI) ∈ UD1,r × · · · ×UDI ,r, if f :
∑

i Di → D1 × · · · ×DI and u :
∑

i Di → R

are derived from (u1, . . . , uI) via WMP, then f ∈ FD1×···×DI
r−1 and u ∈ UP

i Di,r.

Theorem 6 For every I ∈ {1, 2, . . . }, every (D1, . . . , DI) ∈ DI , every r ∈ {2, 3, . . . ,∞, ω},
every f ∈ FD1×···×DI

r−1 , and every u ∈ UP
i Di,r, there exists a (u1, . . . , uI) ∈ UD1,r × · · · ×UDI ,r

such that f and u are derived from (u1, . . . , uI) via WMP. Moreover, for every (v1, . . . , vI) ∈
UD1,r × · · · × UDI ,r, if (v1, . . . , vI) has the same property as this (u1, . . . , uI), then ui − vi is
constant for every i.

For a utility function u ∈ UD, the absolute risk tolerance t : D → R++ is defined by
t(x) = −u′(x)/u′′(x). This is nothing but the reciprocal of the Arrow-Pratt measure of absolute
risk aversion. For each d ∈ R, let V(d,∞) be the set of all u ∈ U(d,∞) for which there exists a
κ ∈ R++ such that t(x) = κ(x − d) for every x > d, where t is the absolute risk tolerance of
u.6 That is, V(d,∞) is the set of all utility functions of which the absolute risk tolerance is affine
with a strictly positive slope κ and its value starts from zero at the minimum subsistence level
d. This is equivalent to saying that every u ∈ ⋃

d∈R V(d,∞) exhibits hyperbolic absolute risk
aversion. The value κ is often referred to as the cautiousness. If d = 0, then V(d,∞) = VR++ = V

and the cautiousness is equal to the reciprocal of the value of constant relative risk aversion. If
d > 0, then every u ∈ V(d,∞) exhibits strictly decreasing relative risk aversion. If d < 0, then
every u ∈ V(d,∞) exhibits strictly increasing relative risk aversion.

It can be easily shown that u ∈ V(d,∞) if and only if there are a κ ∈ R++ and a λ ∈ R++ such
that u′(x) = λ(x−d)−1/κ for every x > d. This is equivalent to saying that (u′)−1 (z) = λκz−κ+d

for every z ∈ R++. We then let W(d,∞) be the set of all u ∈ P(d,∞) for which there exist an
N ∈ {1, 2, . . . }, a (c1, . . . , cN ) ∈ RN

++, and a (s1, . . . , sN ) ∈ RN
++ such that

(
u′

)−1 (z) =
N∑

n=1

cnz−sn + d (21)

for every z ∈ R++.

Proposition 7 The set
⋃

d∈RW(d,∞) is the smallest subset of
⋃

d∈RU(d,∞) that includes
⋃

d∈R V(d,∞)

and is closed under aggregation.

Proposition 8 Let I ∈ {1, 2, . . . } and (d1, . . . , dI) ∈ RI . Let (u1, . . . , uI) ∈ W(d1,∞) × · · · ×
W(dI ,∞) be given by (

u′i
)−1 (z) =

∑
n

cniz
−sn + di

for each i, and f = (f1, . . . , fI) ∈ F (d1,∞)×···×(dI ,∞) be derived from (u1, . . . , uI) via WMP. For
6It is not difficult to prove that for this affine absolute risk aversion t, the utility function u always satisfies

the Inada condition.
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each n, write cn =
∑

i cni and define gn :
(∑

j dj ,∞
)
→

(∑
{j|κj=sn} dj ,∞

)
by

g−1
n (z) =

N∑

m=1

cm

c
sm/sn
n


z −

∑

{j|κj=sn}
dj




sm/sn

+
∑

j

dj (22)

for every z ∈ R++. Then

fi(x) =
N∑

n=1

cni

cn


gn(x)−

∑

{j|κj=sn}
dj


 + di (23)

for every i and every x ∈
(∑

j dj ,∞
)
.

Corollary 3 Let I ∈ {1, 2, . . . } and (d1, . . . , dI) ∈ RI . Let (u1, . . . , uI) ∈ V(d1,∞)×· · ·×V(dI ,∞),
with the constant cautiousness (κ1, . . . , κI). Let f = (f1, . . . , fI) ∈ F (d1,∞)×···×(dI ,∞) and u ∈ W

be derived from (u1, . . . , uI) via WMP. Write u as

(
u′

)−1 (z) =
∑

n

cnz−sn +
∑

j

dj ,

where sn 6= sm whenever n 6= m, and define g = (g1, . . . gN ) ∈ FN by (22). Then:

1. {κ1, . . . , κI} = {s1, . . . , sN}.

2. For every i = 1, . . . , I, let n = 1, . . . , N satisfy κi = sn, then there exists a θi ∈ (0, 1] such
that fi(x) = θi

(
gn(x)−∑

{j|κj=sn} dj

)
+ di for every x ∈

(∑
j dj ,∞

)
.

[Give an example.]

8 Conclusion

In this paper we have shown that the efficiency of risk allocation in no way restricts the nature
of the risk-sharing rules beyond comonotonicity, or the nature of the pricing kernel beyond
positivity and decreasingness. We have also explored implications of this result and investigated
additional restrictions on the risk-sharing and pricing kernels when the individual consumers
exhibit constant relative risk aversion, and when they have identical risk attitudes.

There are some unsolved problems. First, we should identify sufficient conditions on the
efficient risk-sharing rules in economies with more than two consumers having identical risk
attitudes. Such conditions would complement the necessary condition of Proposition 5. Second,
we should extend the present analysis to the economy consisting of infinitely many consumers.
It can be shown, for example, that if the (non-atomistic) individual consumers have utility
functions of the form u(x) =

(
x1−β − 1

)
/ (1− β) with the constant relative risk aversion β

distributed uniformly over an interval
[
β, β

]
, then the value function u of the maximization
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problem in which the summation in the objective function of (WMP) is replaced by an integral
over

[
β, β

]
satisfies

(u′)−1(z) =
z−β − z−β

(
β − β

)
log z

.

It is no longer a finite sum of power functions but is still an elementary function. This suggests
that the functional form (6) defining the classes R and W may admit a tractable extension to
the case of infinitely many consumers. Third, we should extend the present analysis to the case
of multiple goods. A widely used setting in dynamic macroeconomics is where there are two
goods, the consumption good and leisure. In the general case of L goods, the domains of the
utility functions of (WMP) are RL

++ and the efficient risk-sharing rules are mappings from RL
++

to the I-tuples of RL
++. It is then necessary to accommodate non-additive utility functions to

dientangle the degree of substitutabilities between the L goods and the degree of risk aversion
across states. Theorem 2, however, cannot be extended to this case. More specifically, even in
the case of two goods and two consumers, we can construct an example in which some non-
additive utility function u : RL

++ → R for the representative consumer is compatible with some
choices of efficient risk-sharing rules and but with others; and this is due to the the symmetry
of the Hessian matrix ∇2u(x), which is tantamount to the integrability condition to demand
theory. Attempts to extend Theorem 2 might stimulate a host of new directions of research.

A Appendix on the Sum of Power Functions

Proposition 9 Let N be a positive integer, (c1, . . . , cN ) ∈ RN
++, and (s1, . . . , sN ) ∈ RN

++.
Define h : R++ → R++ by h(z) =

∑N
n=1 cnzsn and its elasticity e : R++ → R by e(z) =

h′(z)z/h(z).

1. The function h is strictly increasing and onto.

2. If s1 = · · · = sN , then e is constant. Otherwise, it is strictly increasing. As z → ∞,
e(z) → maxn sn. As z → 0, e(z) → minn sn.

Proof of Proposition 9 1. Since, for every n, z 7→ cnzsn is strictly increasing, and cnzsn →∞
as z →∞ and cnzsn → 0 as z → 0, h is strictly increasing and onto.

2. Since

e(z) =
∑N

n=1 sncnzsn

∑N
n=1 cnzsn

, (24)

if s1 = · · · = sN , then e(z) = s1 = · · · = sN for every z. Otherwise, we prove the claim by
induction on N .

Let’s first prove for the case of N = 2. Without loss of generality, we can assume that
s1 > s2. Then

e(z) =
s1c1z

s1 + s2c2z
s2

c1zs1 + c2zs2
= s1 +

(s2 − s1)c2z
s2

c1zs1 + c2zs2
= s1 − (s1 − s2)c2

c1zs1−s2 + c2
.
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Since the far right hand side is strictly increasing, so is e. It also shows that e(z) → s1 = maxn sn

as z →∞, and

e(z) → s1 − (s1 − s2)c2

c2
= s2 = min

n
sn

as z → 0.
Let N ≥ 3. We now suppose that the proposition is true for N − 1 and then prove that it

is true for N as well. We can assume without loss of generality that si ≥ sN for every i. Then

e(z) =
∑N−1

n=1 cnzsn

∑N
n=1 cnzsn

∑N−1
n=1 sncnzsn

∑N−1
n=1 cnzsn

+
sNcNzsN

∑N
n=1 cnzsn

=

(
1− cNzsN

∑N
n=1 cnzsn

) ∑N−1
n=1 sncnzsn

∑N−1
n=1 cnzsn

+
cNzsN

∑N
n=1 cnzsn

sN . (25)

Here the function
z 7→ cNzsN

∑N
n=1 cnzsn

(26)

is strictly decreasing because its derivative is

cN(∑N
n=1 cnzsn

)2

(
sNzsN−1

(
N∑

n=1

cnzsn

)
− zsN

(
N∑

n=1

sncnzsn−1

))

=
cN(∑N

n=1 cnzsn

)2

N∑

n=1

(sN − sn) cnzsN+sn−1 < 0.

We now consider two separate cases. First, if s1 = · · · = sN−1, then

∑N−1
n=1 sncnzsn

∑N−1
n=1 cnzsn

= s1 = · · · = sN−1,

which is strictly greater than sN . Since (26) is a strictly decreasing function, we see from (25)
that e is a strictly increasing function.

Second, if it is not true that s1 = · · · = sN−1, then, by the induction hypothesis,

z 7→
∑N−1

n=1 sncnzsn

∑N−1
n=1 cnzsn

(27)

is a strictly increasing function, and

∑N−1
n=1 sncnzsn

∑N−1
n=1 cnzsn

→ min
n≤N−1

sn

as z → 0. Since sN ≤ minn≤N−1 sn, the function (27) is always greater than sN and strictly
increasing. Since (26) is strictly decreasing, we conclude from (25) that e is strictly increasing.

The limit of e(z) as z → ∞ can be obtained by dividing both the denominator and the
numerator of the right hand side of (24) by zmaxi si . The limit of e(z) as z → 0 can be obtained
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by dividing both the denominator and the numerator of the right hand side of (24) by zmini si .
///

We can use Proposition 9 to obtain similar results when the exponents are negative.

Corollary 4 Let N be a positive integer, (c1, . . . , cN ) ∈ RN
++, and (s1, . . . , sN ) ∈ RN

++. Define
h : R++ → R++ by h(z) =

∑N
n=1 cnz−sn and its elasticity, multiplied by −1, e : R++ → R by

e(z) = −h′(z)z/h(z).

1. The function h is strictly decreasing and onto.

2. If s1 = · · · = sN , then e is constant. Otherwise, it is strictly decreasing. As z → ∞,
e(z) → minn sn. As z → 0, e(z) → maxn sn.

Proof of Corollary 4 Define ĥ : R++ → R++ by ĥ(z) =
∑N

n=1 cnzsn and its elasticity
ê : R++ → R by ê(z) = ĥ′(z)z/ĥ(z). Then h(z) = ĥ(1/z) and e(z) = ê(1/z). The claims of
this corollary follow from Proposition 9. ///

Since the function h in Proposition 9 is strictly increasing and onto, it has an inverse function.
Another corollary of Proposition 9 is concerned with the inverse function.

Corollary 5 Let N be a positive integer, (c1, . . . , cN ) ∈ RN
++, and (s1, . . . , sN ) ∈ RN

++. Define
h : R++ → R++ by h(z) =

∑N
n=1 cnzsn, and denote its inverse function by g : R++ → R++.

Define the elasticity of g, e : R++ → R, by e(x) = g′(x)x/g(x).

1. The function g is strictly increasing and onto.

2. If s1 = · · · = sN , then e is constant. Otherwise, it is strictly decreasing. As x → ∞,
e(x) → 1/maxn sn. As x → 0, e(x) → 1/minn sn.

Proof of Corollary 5 Part 1 follow from the fact that h is strictly increasing and onto. Define
the elasticity of h, ê : R++ → R, by ê(z) = h′(z)z/h(z). Then e(x) = (ê (g(x)))−1 for every
x ∈ R++. Part 2 follows from this equality and Proposition 9. ///

The last corollary combines the cases covered by the preceding two corollaries.

Corollary 6 Let N be a positive integer, (c1, . . . , cN ) ∈ RN
++, and (s1, . . . , sN ) ∈ RN

++. Define
h : R++ → R++ by h(z) =

∑N
n=1 cnz−sn, and denote its inverse function by g : R++ → R++.

Define the elasticity of g multiplied by −1, e : R++ → R, by e(x) = −g′(x)x/g(x).

1. The function g is strictly decreasing and onto.

2. If s1 = · · · = sN , then e is constant. Otherwise, it is strictly decreasing. As x → ∞,
e(x) → 1/maxn sn. As x → 0, e(x) → 1/minn sn.
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Proof of Corollary 6 Part 1 follow from the fact that h is strictly decreasing and onto. As
for part 2, define the elasticity of h multiplied by −1, ê : R++ → R, by ê(z) = −h′(z)z/h(z).
As shown in the proof of Corollary 5, e(x) = (ê (g(x)))−1 for every x ∈ R++. Since g(x) → 0
as x → ∞ and g(x) → ∞ as x → 0, by Corollary 4, ê (g(x)) → maxn sn as x → ∞ and
ê (g(x)) → minn sn as x → 0. Thus e(x) → 1/maxn sn as x → ∞ and e(x) → 1/minn sn as
x → 0. ///
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